期刊文献+

基于机器视觉的螺纹钢表面尺寸检测方法 被引量:8

Defects detection methods of bar surface size under complex Illumination
在线阅读 下载PDF
导出
摘要 针对高速螺纹钢表面缺陷检测技术难题,对螺纹钢表面尺寸的视觉检测方法进行研究。针对螺纹钢外形结构尺寸复杂的特点,通过对螺纹钢的侧面图像进行分析,获得其边缘图像后,提出了基于投影重心的亚像素边界定位方法,获得螺纹钢横肋高及内径的尺寸。通过分析螺纹钢的正面图像,获得其边缘图像后进行垂直投影,求出螺纹钢纵肋高度;在此基础上,通过对重心遍历,结合轮廓跟踪处理,计算出横肋与轴线夹角;结合与夹角的几何关系,计算得出螺纹钢横肋间距、横肋顶宽的尺寸。获取的螺纹钢表面结构尺寸为其缺陷检测奠定了基础。
出处 《制造业自动化》 2015年第8期56-58,64,共4页 Manufacturing Automation
基金 国家自然科学基金面上项目(51174151) 湖北省重大科技创新计划项目(2013AAA01) 武汉市科技局重点科技攻关项目(2014010202010088)
作者简介 来煜(1989-),男,湖北成宁人,硕士研究生,研究方向为智能设计与控制。
  • 相关文献

参考文献9

  • 1Hyuck-Cheol Kwona, Ho-Won Leeb, Hak-Young Kimc,et al.Surface wrinkle defect of carbon steel in the hot bar rolling process[J].Journal of Materials Processing Technology,209(2009):4476-4483.
  • 2Fuchs A, Hauselhofer W,Brasseur G. Design of an eddy current based crack detection sensor for wire processing applications [A]. Proceedings of IEEE Sensors 2004,Vienna,Austria[C].Oct 24- 27,2004,2:840-843.
  • 3许裕禄.棒钢表面缺陷自动化检测系统[D].台南:成功大学,2007.
  • 4Da Zhang,Zhi Xie, Chong Wang.Bar Section Image Enhancement and Positioning Method in On-Line Steel Bar Counting and Automatic Separating System[J].Congress on Image and Signal Processing,2008:319-323.
  • 5Pal S K,King R A,Hashim A A. Automatic graylevel thresholding through index of fuzziness and entropy[J].Pattern Recognition Letter(S0167-8655 ), 1983,1 (3): 141 - 146.
  • 6张珏遂.螺纹钢质量影响因素分析及改进研究[J].金属材料与冶金工程,2010,38(4):6-9. 被引量:5
  • 7张槐祥,刘怀广,杨茂麟,王兴东.复杂光照环境下的线材缺陷自适应分割方法[J].光电工程,2014,41(2):40-46. 被引量:10
  • 8FAN L N, WEN Y,XU X H. Research on edge detection of grey- scale image corrupted by noise based on multi-structure elements [A].The 4th International Conference on Parallel and Distributed C omputing(PDCAT' 03),Chengdu,China[C],Aug 27-29,2003:840- 843.
  • 9Jong Pil Yun,YoungSu Park,Boyeul Seo,et al.Development of Real-time Defect Detection Algorithm for High-speed Steel Bar in CoiI(BIC)[A].SICE-ICASE International Joint Conference. Bexco, Busan, Korea[C].Oct. 18-21,2006:2495-2498.

二级参考文献8

  • 1杜晓晨,刘建平.改进的模糊阈值图像分割方法[J].光电工程,2005,32(10):51-53. 被引量:13
  • 2Fuchs A, Hauselhofer W, Brasseur G. Design of an eddy current based crack detection sensor for wire processing applications [C]// Proceedings of IEEE Sensors 2004, Vienna, Austria, Oct 24-27, 2004, 2: 840-843.
  • 3许裕禄.棒钢表面缺陷自动化检测系统[D].台南:成功大学,2007.
  • 4Changhyun Park, Seho Choi, Sangchul Won. Vision-based inspection for periodic defects in steel wire rod production [J]. Optical Engineering(S0091-3286), 2010, 49(1): 017202-01-017202-10.
  • 5Pal S K, King R A, Hashim A A. Automatic graylevel thresholding through index of fuzziness and entropy [J]. Pattern Reeognition Letter(S0167-8655), 1983, 1(3): 141-146.
  • 6Murthy C A, Pal S K. Bound for membership function: a correlation-based approach [J]. Information Sciences(S0020-0255), 1992, 65: 143-171.
  • 7FAN L N, WEN Y, XU X H. Research on edge detection of grey-scale image corrupted by noise based on multi-structure elements [C]//The 4th International Conference on Parallel and Distributed Computing(PDCAT'03), Chengdu, China, Aug27-29, 2003: 840-843.
  • 8乔明亮,肖立军,王长生,张红雁,周志军.高速线材表面缺陷的产生原因及排除方法[J].山东冶金,2010,32(4):16-17. 被引量:6

共引文献14

同被引文献60

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部