摘要
针对标准的扩展卡尔曼滤波算法(EKF)在强非线性系统中估计精度较低的问题,提出了一种改进的扩展卡尔曼滤波算法(MI-EKF),使得滤波精度得到很大的提高。MI-EKF是在标准EKF基础上,结合多新息理论,不仅考虑了系统当前的测量值,而且也充分考虑了之前时刻的有用信息,从而使得MI-EKF的滤波精度和稳定性得到改善。最后,讨论了新息数量对改进算法精度的影响,仿真结果表明包含两个新息的MI-EKF算法滤波效果最佳。
Because of the low estimation accuracy of normal extended Kalman filter( EKF) in strong nonlinear system,this paper developed an improved extended Kalman filter( MI-EKF) to solve the problem,and it improved the filtering accuracy greatly. It proposed MI-EKF by combining multi-innovation theory and the standard EKF. MI-EKF had better precision and stability,because MI-EKF considered not only the current measured value,but also gave full consideration to the time before state of motion. Finally,it discussed the impact of algorithm precision which included different numbers of innovations. Simulation results show that the improved algorithm MI-EKF included two innovations is optimal.
出处
《计算机应用研究》
CSCD
北大核心
2015年第5期1568-1571,共4页
Application Research of Computers
基金
山西省青年基金资助项目(201002106-13)
关键词
非线性
扩展卡尔曼滤波
多新息
多新息扩展卡尔曼滤波
仿真分析
nonlinear
extended Kalman filter
multi-innovation
multi-innovation extended Kalman filter
simulation analyses
作者简介
刘毛毛(1987-),女(通信作者),山西太原人,硕士研究生,主要研究方向为计算机视觉及图像处理等(liumaomaowin@163.com):
秦品乐(1978-),男,山西太原人,副教授,博士,主要研究方向为机器视觉及网络控制等;
吕国宏(1989-),男,山西介休人,硕士研究生,主要研究方向为计算机视觉及图像处理等;
常江(1988-),男,山西太原人,硕士研究生,主要研究方向为点云匹配技术.