期刊文献+

MFC-非均相Fenton法的甲基红脱色及产电性能研究 被引量:1

Research on the decolorization of methyl red and bioelectricity generating capacity by a combined process,MFC and heterogeneous Fenton-like reaction
在线阅读 下载PDF
导出
摘要 提出了微生物燃料电池(MFC)-非均相Fenton法处理染料废水的新概念。在双室MFC碳纸阴极上添加石墨烯和Fe3O4纳米颗粒(质量比1∶1)复合物涂层,给阴极室曝气,在p H为中性条件下,阴极氧接受从阳极传递过来的电子原位生成H2O2,并与Fe3O4纳米颗粒发生非均相Fenton反应生成·OH,从而促进阴极室内甲基红溶液的脱色。实验结果表明,48 h内该方法对甲基红的脱色率达86.5%,同时MFC电压稳定保持在(0.238±0.007)V。实验过程中未检出Fe2+和Fe3+,说明未发生均相Fenton反应。 The combined process,microbial fuel cell (MFC)-heterogeneous Fenton-like reaction as a new concept used for treating dye wastewater has been proposed. Grapheme and Fe3O4 nano-particles,whose mass ratio is 1∶1 should be smeared on the surface of carbon paper cathode in the dual-chamber MFC. As the aeration takes place in cathode chamber,the pH is under a neutral condition,cathode oxygen adopts the electrons transmitted from anode, H2O2 is in-situ produced and heterogeneous Fenton-like reaction is triggered with Fe3O4 nano-particles and produce hydroxyl radicals, facilitating the decolorization of methyl red. The experimental results show that the decolorization rate of methyl red can reach 86.5%and the MFC voltage is maintained at(0.238±0.007) V in 48 hours. Furthermore, ferrous and ferric iron have not been detected in experiments , indicating that homogenous Fenton reaction has not occurred.
出处 《工业水处理》 CAS CSCD 北大核心 2015年第4期36-40,共5页 Industrial Water Treatment
关键词 石墨烯 FE3O4 微生物燃料电池 脱色 甲基红 graphene Fe3O4 microbial fuel cell decolorization methyl red
作者简介 彭宏(1980-),博士研究生,讲师。电话:028-86291390,E-mail:scupenghong@163.com。
  • 相关文献

参考文献23

  • 1Rajaguru P,Kalaiselvi K,Palanivel M,et al. Biodegradation of azo dyes in a sequential anaerobic-aerobic system[J]. Applied Microbi-ology and Biotechnology,2000,54(2):268-273.
  • 2Rusevova K,Kopinke F D,Georgi A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions:influence of Fe(Ⅱ)/Fe(Ⅲ) ratio on catalytic performance[J]. Journal of Hazar-dous Materials,2012,241-242:433-440.
  • 3Ramirez J H,Maldonado-Hódar F J,Pérez-Cadenas A F,et al. Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts[J]. Applied Catalysis B:Environmental, 2007,75(3/4):312-323.
  • 4Fu Lei,You Shijie,Zhang Guoquan,et al. Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing micr-obial fuel cell[J]. Chemical Engineering Journal,2010,160(1):164-169.
  • 5Tian S H,Tu Y T,Chen D S,et al. Degradation of acid orange Ⅱ at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like cata-lyst[J]. Chemical Engineering Journal,2011,169:31-37.
  • 6Logan B E,Hamelers B,Rozendal R,et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Techn-ology,2006,40(17):5181-5192.
  • 7Hummers Jr. W S,Offeman R E. Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
  • 8Zhang Teng,Xue Qingzhong,Zhang Shuai,et al. Theoretical approa-ches to graphene and graphene-based materials[J]. Nanotoday,2012,7(3):180-200.
  • 9Ai Lunhong,Zhang Chunying,Chen Zhonglan. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite[J]. Journal of Hazardous Materials, 2011,192(3):1515-1524.
  • 10Peng Xinhong,Yu Hongbing,Wang Xin,et al. Enhanced perfor-mance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells[J]. Bioresource Technology,2012,121:450-453.

同被引文献36

  • 1郭伟,李怡帆,宋虹,闫旭,孙剑辉.共基质下微生物燃料电池同步脱色甲基橙与产电性能[J].环境工程学报,2015,9(3):1189-1193. 被引量:4
  • 2Rajaguru P, Kalaiselvi K, Palanivel M, et al. Biodegradation of azo dyes in a sequential anaerobic-aerobic system [J].Applied Microbiology and Bioteehnology,2000,54(2):268-273.
  • 3Logan B E, Bert H, Rene R, et al. Microbial fuel cells: methodology and technology [J].Environmental Science & Technology,2006,40 (17):5181-92.
  • 4王芳.微生物燃料电池简介[J].中国化工贸易,2014,6(19):87.
  • 5Sun J, Li Y, Hu Y, et al. Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation [J].Environmental Biotechnology,2013,97 (8):3711-3719.
  • 6Sun J, Hu Y Y, Bi Z, et al. Simultaneous decolorization of azo dye and bioelecvicity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell [J].Bioresource Technology,2009,100(13):3185-3192.
  • 7Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel ceils (MFCs) for sustainable energy production [J].Bioresouree Technology,2010,101 (6): 1533 - 1543..
  • 8Guo W, Feng J L, Song H, et al. Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity [J].Environmental Science and Pollution Research,2014,21 (19): 11531-11540.
  • 9Femando E, Keshavarz T, Kyazze G. Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis throughco-metabolism in a microbial fuel cell [J].International Biodeterioration & Biodegradation,2012,72(4): 1-9.
  • 10Sun J, Li W, Li Y, et al. Redox mediator enhanced simultaneous decolofization of azo dye and bioelectricity generation in air-cathode microbial fuel cell[J].Bioresource Technology,2013,142(4):407-414.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部