期刊文献+

基于T-H方程的多脉冲最优交会方法 被引量:3

Optimal multi-impulse rendezvous based on T-H equations
在线阅读 下载PDF
导出
摘要 针对椭圆参考轨道交会问题,采用T-H方程描述相对运动,提出了一种时间固定燃料最省的多脉冲最优交会方法,优化参数为交会脉冲及其施加时刻.当考虑到J2摄动或航天器初始相对距离较大时,用T-H方程进行状态预测其线性化误差一般不容忽略,而若用轨道积分预测则耗时较多,进而导致优化时间过长.针对此问题,提出一种采用前一优化脉冲节点的状态导出的轨道根数预测当前节点状态的预测方法.该方法简单实用,有效地加快了优化收敛速度.最后基于多脉冲优化解进行了数值轨道积分以验证交会精度.仿真结果表明,即使加上J2摄动,在初始相对距离为1000km时,该方法的终端位置精度仍能达到75m. For rendezvous near an elliptic reference orbit,relative motion was described by T-H equations. One time-fixed fuel-optimum multi-impulse rendezvous method was proposed to determine the optimal impulse and its time. If J2 perturbation or the far initial relative distance was considered,the T-H equations linearization error couldn’t be ignored,while the trajectory integration was more time-consuming and the optimal convergence rate decreased. For this problem,a new method was put forward that the current node state could be predicted with the orbit element computed by the previous one. It was very simple and valid for making optimal convergence faster. Based on the optimal impulse time,the trajectory numerical integration was carried out to verify the rendezvous precision. The results indicate that the terminal position has higher accuracy up to 75 m even under J2 perturbation and the initial relative distance of 1 000 km.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第7期905-909,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 多脉冲交会 T-H方程 相对运动 J2摄动 状态预测 multi-impulse rendezvous T-H equations relative motion J2 perturbation state prediction
作者简介 姬晓琴(1971-),女,河南辉县人,高级工程师,ji_xiaoqin@126.xom.
  • 相关文献

参考文献15

  • 1林来兴.空间交会对接技术[M].北京:国防工业出版社,1995..
  • 2Clohessy W H, Wiltshire R S.Terminal guidance system for satellite rendezvous[J].Journal of Aerospace Science.1960, 27(9):653-658.
  • 3Lawden D F. Optimal trajectories for space navigation[M].London:Butterworths, 1963.
  • 4Handelsman M, Lion P M.Primer vector on fixed-time impulse trajectories[J].AIAA Journal.1968, 6(1):127-132.
  • 5Lawden D F. Fundamentals of space navigation[J].Journal of the British Interplanetary Society, 1954, 13(2):87-101.
  • 6Tschauner J, Hempel P.Rendezvous zu einem in elliptischer bahn umlaufenden ziel[J].Astronautica Acta, 1965, 11(2):104-109.
  • 7Yamanaka k, Ankersen F.New state transition matrix for relative motion on an arbitrary elliptical orbit[J].Journal of Guidance, Control, and Dynamics.2002, 25(1):60-66.
  • 8Carter T, Humi M.Fuel-optimal rendezvous near a point in general Keplerian orbit[J].Journal of Guidance, Control, and Dynamics.1987, 10(6):567-573.
  • 9Carter T. New form for the optimal rendezvous equations near a Keplerian orbit[J].Journal of Guidance, Control, and Dynamics.1990, 13(1):183-186.
  • 10Carter T, Alvarez S A.Quadratic-based computation of four-impulse optimal rendezvous near circular orbit[J].Journal of Guidance, Control, and Dynamical Astronomy, 2003, 23(1):109-117.

二级参考文献14

  • 1周军,常燕.考虑地球扁率J2摄动影响的异面椭圆轨道多冲量最优交会[J].宇航学报,2008,29(2):472-475. 被引量:12
  • 2谌颖,黄文虎,倪茂林,王旭东,白拜尔.多冲量最优交会的动态规划方法[J].宇航学报,1993,14(2):1-7. 被引量:15
  • 3KECHICHIAN JEAN ALBERT. Motion in general elliptic orbit with respect to a dragging and presessing coordinate frame [J]. The Journal of the Astronautical Sciences 1998, 46 (1) : 25-45.
  • 4GIM DONG WOO, ALFRIEND KYLE TERRY. State transition matrix of relative motion for the perturbed noncircular reference orbit [J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (6): 956-971.
  • 5SENGUPTA PRASENJIT, VADALI SRINIVAS RAO, ALFRIEND KYLE TERRY. Averaged relative motion and applications to formation flight near perturbed orbits [J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (2): 258-272.
  • 6YAMANAKA KOJI, ANKERSEN FINN. New state transition matrix for relative motion on an arbitrary elliptical orbit [J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (1): 60-66.
  • 7JIANG FANGHUA, LI JUNFENG, BAOYIN HEXI, et al. Two-point boundary value problem solutions to spacecraft formation flying [J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (6): 1827-1837.
  • 8GOODING ROBERT H. A procedure for the solution of Lambert's orbital boundary-value problem [J]. Celestial Mechanics and Dynamical Astronomy, 1990, 48 (2): 145-165.
  • 9XU GUANGYAN, WANG DANWEI. Nonlinear dynamic equations of satellite relative motion around an oblate earth [J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5): 1521-1524.
  • 10Haijun Shen, Panagiotis Tsiotras. Optimal Two-Impulse Rendezvous Between Two Circular Orbits Using Multiple- Revolution Lambert Is Solutions [ C ]. AIAA 2002-4844, 2002.

共引文献59

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部