摘要
为探索通过智能手机等通信工具随时随地获得的交通信息对居民通勤出行链模式选择行为的影响,采用RP(Revealed Preference)调查获取出行者的社会经济属性、交通信息使用属性以及通勤出行链模式选择行为数据,用信息查询频率度量出行者的交通信息使用属性,建立估计通勤出行链模式的二项Logit模型.研究发现:(1)交通信息在促进复杂链的生成上发挥着较大的作用;(2)在交通信息的作用下,停车换乘(Park and Ride,P&R)方式比公共交通和小汽车都更能促进复杂链的生成;(3)出行者的性别、婚姻状态、家中是否有12周岁以下儿童等对出行链模式选择不会有显著影响.
To discuss the impact of traffic information that can be obtained anywhere at any time through smart phones on commuters' trip chain pattern choice behavior,RP( Revealed Preference) survey is adopted to collect the commuters ' socio-demographic attributes,traffic information attributes and trip chain pattern choice data. The traffic information attributes are measured by the information query frequency. A binary Logit model is built to quantify the commuters' trip chain pattern choice. It shows that:( 1) the traffic information plays a great role in promoting the generation of complex chain;( 2) the travel mode of Park Ride( PR) is more likely to promote the generation of complex chain under the traffic information than the public and private transport modes;( 3) the commuters' gender,marital status and whether there are children under the age of 12 in their family don't have a significant impact on their trip chain pattern choice.
出处
《上海海事大学学报》
北大核心
2015年第1期12-18,共7页
Journal of Shanghai Maritime University
基金
交通运输部应用基础研究项目(2012-329-810-170)
上海海事大学校基金(20120081)
关键词
通勤
出行链模式选择
交通信息
二项Logit模型
RP调查
commuting
trip chain pattern choice
traffic information
binary Logit model
Revealed Preference(RP) survey
作者简介
张华歆(1978-),女,江西九江人,副教授,博士,研究方向为交通规划与管理,(E—mail)hxzhang@shmtu.edu.cn