期刊文献+

敷设多孔吸声材料声腔特征值分析的径向积分边界元法 被引量:5

Eigenvalue analysis for acoustical cavity covered with porous materials by using the radial integration boundary element method
在线阅读 下载PDF
导出
摘要 由于Helmholtz方程的基本解是频率的函数,因此传统边界元法在处理声场特征值问题时具有天生的缺陷。本文采用Laplace方程基本解生成积分方程,通过径向积分法将在此过程中产生的域积分项转化为边界积分。此方法克服了传统边界元法系数矩阵对频率的依赖,同时克服了特解积分法对特解的依赖,并通过对表面声导纳的多项式逼近,将敷设多孔吸声材料声腔特征值问题转化为矩阵多项式,从而避免了复杂的非线性求解。通过数值算例验证了算法的有效性。 The traditional boundary element method has a well-known difficulty when calculating acoustic eigenvalue problems since the fundamental solution of the Helmholtz equation is dependent on the frequency. In this paper,the integral equation of acoustics Helmholtz equation is obtained by using the fundamental solution of Laplace equation,and then the radial integration method is presented to transform domain integrals to boundary integrals. The proposed method eliminates the frequency dependency of the coefficient matrices in the traditional boundary element method and the dependence on particular solu- tions of the particular integral method. By using polynomials approximating of surface acoustic admit- tance, the acoustic eigenvalue analysis procedure for acoustical cavity covered with porous materials resorts to a matrix polynomial problem instead of nonlinear transcendental eigenvalue forms. Several numerical examples are presented to demonstrate the validity and accuracy of the proposed approach.
作者 屈伸 陈浩然
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第1期123-128,共6页 Chinese Journal of Computational Mechanics
关键词 径向积分边界元法 三维声场 多孔吸声材料 声学特征值 radial integration boundary element method three-dimensional sound field porous materials acoustic eigenvalue problem
作者简介 陈浩然(1940-),男,教授,博士生导师(E—mail:chenhr@dlut.edu.cn).
  • 相关文献

参考文献29

  • 1刘新金,刘建立,徐伯俊,高卫东.分层多孔材料吸声结构的性能分析[J].振动与冲击,2012,31(5):106-110. 被引量:27
  • 2陈文炯,刘书田.周期性吸声多孔材料微结构优化设计[J].计算力学学报,2013,30(1):45-50. 被引量:14
  • 3王永华,张成春,王晶,石磊,张雪鹏,任露泉.仿生多孔材料吸声性能[J].吉林大学学报(工学版),2012,42(6):1442-1447. 被引量:4
  • 4Yoon G H. Acoustic topology optimization of fibrous material with Delany-Bazley empirical material formu- lation[J]. Journal of Sound and Vibration, 2013,332(5) : 1172-1187.
  • 5Totaro N, Guyader J L. Efficient positioning of absor- bing material in complex systems by using the patch transfer function method[J]. Journal of Sound and Vibration ,2012,331(13) :3130-3143.
  • 6Min S, Nagamura K, Nakagawa N, et al. Design of compact micro-perforated membrane absorbers for polycarbonate pane in automobile [J]. Applied Acoustics,2013,74(4) : 622-627.
  • 7黎胜,赵德有.用边界元法计算结构振动辐射声场[J].大连理工大学学报,2000,40(4):391-394. 被引量:24
  • 8Ali A, Rajakumar C. The Boundary Element Method Applications in Sound and Vibration[M]. Tokyo: A. A. Balkema Publishers, 2004.
  • 9Leblanc A,Lavie A. Solving acoustic nonlinear eigen- value problerfis with a contour integral method[J]. Engineering Analysis with Boundary Elements, 2013,37(1) : 162-166.
  • 10Leblanc A, Lavie A. Iterative estimation of eigen- modes for acoustic cavities [J ]. Engineering Analy- sis with Boundary Elements ,2013,37(6) :924-927.

二级参考文献52

共引文献67

同被引文献18

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部