期刊文献+

杂种偏分离的遗传和分子机理研究进展 被引量:7

Research progress on genetic and molecular mechanisms of hybrid segregation distortion
在线阅读 下载PDF
导出
摘要 杂种偏分离是指杂交后代群体在某个位点的基因型分离比偏离了预期的孟德尔分离比例的一种现象,是来自不同杂交亲本基因之间的不兼容性所致。功能缺失型和功能获得型的基因间互作都可以导致杂种偏分离,其中前者的机理比较简单,即缺陷型的基因组合导致原有功能丧失而造成细胞死亡。功能获得型杂种偏分离系统是由多基因控制的遗传系统,包含两个基本成分:杀手(killer)因子和护卫(protector)因子,此外还有增强子(enhancer)、抑制基因(repressor)等修饰因子。功能获得型杂种偏分离有通用的遗传模型:具有传递优势的单倍型含有高活性的killer+和protector+;传递劣势的单倍型含有低活性的killer-和protector-;中性的单倍型(广亲和型)则含有killer-和protector+。该系统通过killer和protector间的紧密连锁、修饰因子的积累等途径得以在自然选择中保存下来。尽管不同功能获得型杂种偏分离系统的遗传机理有较高的相似性,但分子机制则大相径庭。文章综述了杂种偏分离的遗传和分子机理以及其与杂种不育的关系,以期为后续杂种偏分离研究提供参考。 Segregation distortion (SD) is defined as abnormal segregation ratio of hybrid offsprings at some genetic loci deviating from the Mendelian ratio. SD results from the incompatibility among genes from different parents, which could be due to loss-of-function or gain-of-function gene interactions. The mechanism for loss-of-function SD is relatively simple: defective gene combination leads to loss of the original function and eventual cell death. The gain-of-function hybrid SD system is a multi-gene genetic system, comprising two basic components: the killer and the protector. Additional modifiers, such as enhancers and repressors, are also involved. There is a general genetic model for gain-of-function hybrid SD: haplotypes with transmission advantage possess high-activity killer+ and protector+; those with transmission disadvantage possess low-activity killer- and protector-; neutral haplotypes (wide compatibility types) possess killer- and protector+. Depending upon close linkage between the killer and the protector and the accumulation of modifiers, the SD system survived through natural selection. Although the genetic mechanismsare highly similar, different gain-of-function hybrid SD systems have distinctive molecular mechanisms. In this re- view, we summarize the genetic and molecular mechanisms of hybrid SD, and the relationship between hybrid SD and hybrid sterility.
出处 《遗传》 CAS CSCD 北大核心 2015年第2期148-156,共9页 Hereditas(Beijing)
基金 国家自然科学基金项目(编号:31471476)资助
关键词 偏分离 基因互作 广亲和 生殖隔离 杂种不育 segregation distortion gene interaction wide compatibility reproductive isolation hybrid sterility
作者简介 范智权,硕士研究生,专业方向:遗传学。E-mail:fanzhiquan123@mail.gxu.cn 通讯作者:杨江义,博士,教授,研究方向:植物分子生物学。E-mail:yangjy598@163.com
  • 相关文献

参考文献48

  • 1巢素珍.水稻中连锁不平衡的研究进展[J].科技经济市场,2011(6):14-15. 被引量:1
  • 2Kianian SF, Quiros CF. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet, 1992, 84(5-6): 544-554.
  • 3Kusano A, Staber C, Chan HYE, Ganetzky B. Closing the (Ran)GAP on segregation distortion in Drosophila. BioEssays, 2003, 25(2): 108-115.
  • 4Chen J J, Ding JH, Ouyang YD, Du HY, Yang JY, Cheng K, Zhao J, Qiu SQ, Zhang XL, Yao JL, Liu KD, Wang L, Xu CG, Li XH, Xue YB, Xia M, Ji Q, Lu JF, Xu ML, Zhang QF. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japoniea hybrids in rice. Proc Natl Acad Sci USA, 2008, 105(32): 11436-11441.
  • 5Charlesworth B. Driving genes and chromosomes. Nature,1988, 332(6163): 394-395.
  • 6Ardlie K. Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet, 1998, 14(5): 189-193.
  • 7宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响[J].农业生物技术学报,2006,14(2):286-292. 被引量:50
  • 8Pimpinelli S, Dimitri P. Cytogenetic analysis of segrega- tion distortion in Drosophila melanogaster: the cytologi- cal organization of the responder (Rsp) locus. Genetics, 1989, 121(4): 765-772.
  • 9Herrmann BG, Koschorz B, Wertz K, Mclaughlin KJ, Kispert A. A protein kinase encoded by the t complex re- sponder gene causes non-mendelian inheritance. Nature, 1999, 402(6758): 141-146.
  • 10江玉梅,杨桂玲.连锁不平衡的研究与应用[J].江西植保,2004,27(2):61-63. 被引量:6

二级参考文献89

  • 1[1]Lewontin RC:The interaction of selection and linkage.I.general considerations:heterotic models.Genetics1964,49:49~67
  • 2[2]Pritchard JK,Przeworski M.Linkage disequilibrium in humans:models and data.Am J Hum Genet2001,69:1~14
  • 3[3]Remington DL,Thomsberry JM,Matsuoka Y,Wilson LM,Whitt SR,Doebley J,Kresovich S,Goodman MM,Buckler ES:Structure of linkage disequilibrium and phenotypic association in the maize genome.Proc Natl Acad Sci USA2001,98:11479~11484
  • 4[4]Reich DE,Cargill M,Bolk S,Ireland J,Sabeti PC,Richter DJ,Lavery T,Kouyoumjian R,Farhadian SF,Ward R,Lander ES:Linkage disequilibrium in the human genome.Nature2001,411:199~204
  • 5[5]Moffatt MF,Traherne JA,Abecasis GR,Cookson WOCM:Single nucleotide polymorphisms and linkage disequilibrium within the TCR α/δ locus.Hum.Mol.Genet2000,9:1011~1019
  • 6[6]Nordborg M,Borevitz JO,Bergelson J,Berry CC,Chory J,Hagenblad J,Kreitman M,Maloof JN,Noyes T,Oefner PJ,Stahl EA,Weigel D:The extent of linkage disequilibrium in Arabidopsis thaliana.Nature Genetics2002,30:190~193
  • 7[7]Zhu YL,Song QJ,Hyten DL,Tassell CPV,Matukumalli LK,Grimm DR,Hyatt SM,Fickus EW,Young ND,Cregan PB:Single nucleotide polymorphisms in soybean.Genetics 2002,163:1123~1134
  • 8[8]Stephens JC,Schneider JA,Tanguay DA et al:Haplotype variation and linkage disequilibrium in 313 human genes.Science2001,293:489~493
  • 9[9]Oliver M,Bustos VI,Levy MR,Smick GA,Moreno I,Bushard JM,Almendras AA,Sheppard K,Zierten DL,Aggarwal A,Carlson CS,Foster BD,Vo FN,Kelly L,Liu X,Cox DR:Complex high-resolution linkage disequilibrium and haplotype pattens of single-nucleotide polymorphisms in 2.5Mb of sequence on human chromosome 21.Genomics2001,78:64~72
  • 10[10]Patil N,Berno AJ,Hinds DA,Barrett JM,Hacker DC,Kautzer CR,Lee DH,Marjoribanks C,Mcdonough DP,Nguyen BTN,Norris MC,Sheehan JB,Shen N,Stern D,Stokowski RP,Thomas DJ,Trulson MO,Vysa KR,Frazer KA,Foder SPA,Cox DR:Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.Science2001,294:1719~1723

共引文献54

同被引文献93

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部