摘要
爆震特征提取是汽油机点火闭环控制的前提和基础。基于集合经验模式分解(Ensemble empirical mode decomposition,EEMD),提出一种汽油机爆震特征提取方法。EEMD通过对信号加入有限幅度的高斯白噪声,利用高斯白噪声频率均匀分布的统计特性使信号在不同尺度上保持连续性,有效地抑制经验模式分解(Empirical mode decomposition,EMD)的模式混叠问题。研究了利用EEMD和EMD两种方法分别从汽油机缸内压力信号和缸盖振动信号中提取爆震特征的可行性和有效性。试验结果表明,对于缸内压力信号,EEMD和EMD均能提取出爆震特征;对于缸盖振动信号,EEMD可以提取出爆震特征,而EMD则由于模式混叠的影响,无法提取爆震特征。
Knock feature extraction is the key of closed loop control of ignition in gasoline engine. Based on the ensemble empirical mode decomposition (EEMD), a gasoline engine knock feature extraction method is presented. By adding some finite amplitude Gaussian white noises to the signal, EEMD keeps the signal continuous in different time span, and therefore the mode mixing inhering in the classical empirical mode decomposition (EMD) method is alleviated. The effectiveness of applying EEMD and EMD to extract knock feature from a pressure signal measured from combustion chamber and a vibration signal measured from cylinder head are investigated. The experimental results demonstrate that the knock feature can be effectively extracted from both pressure and vibration signals by EEMD. On the other hand, owing to the interference in different modes, the knock signature can only be extracted from the pressure signal by EMD.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2015年第2期148-154,共7页
Journal of Mechanical Engineering
基金
国家自然科学基金(51305250)
上海市教委创新(14YZ153)
上海第二工业大学机械制造及其自动化培育学科(XXKPY1305)资助项目
关键词
汽油机
爆震
特征提取
经验模式分解
gasoline engine
knock
feature extraction
empirical mode decomposition
作者简介
李宁(通信作者),女,1981年出生,副教授。主要研究方向为机械故障诊断与信号处理技术。E-mail:lining@sspu.edu.cn
杨建国,男,1964年出生,教授,博士研究生导师。主要研究方向为故障诊断与动态信号分析。E-mail:yjglryz@sina.com.cn