期刊文献+

稀疏性约束的地球物理数据高效采集方法初步研究 被引量:17

The preliminary study on high efficient acquisition of geophysical data with sparsity constraints
在线阅读 下载PDF
导出
摘要 信号变换系数的稀疏分布特性已广泛应用于信号压缩、编码和数据处理,作为一种先验知识也为信号的采样方法研究奠定了基础。地球物理数据是一种空间/空间-时间变化的信号,因此将地球物理数据的稀疏性应用于地球物理数据的高效采集方法研究。在地球物理数据稀疏性的数学物理基础研究、针对不同数据变化特征的稀疏变换方法研究、随机均匀分布的随机采样方法研究和数据重构方法研究的基础上,结合当前数据采集中的Nyquist采样理论、地球物理数据的稀疏性特征和当前地球物理数据采集中常见的密集规则测网,提出了针对被动源地球物理数据和主动源地球物理数据的高效采集方法,通过数值试验验证了方法的正确性和有效性。 The sparsity in the transform domain of geophysical data(also known as the sparsity of geophysical data)has been widely used in data compression coding and data processing.In the paper,we apply the sparsity of geophysical data for the study on high efficient acquisition method of geophysical data.Based on the study of the mathematical physics foundation of the sparsity of geophysical data,the sparse transform methods aiming at variation characteristics in different geophysical data,the random sampling methods with random and even distribution,and the data recovery methods,we proposed high efficient acquisition methods for passive source geophysical data and active source geophysical data by combining the Nyquist sampling principle used in current data acquisition,the sparsity of the geophysical data and the conventional dense and regular measurement network used in the current geophysical data acquisition.The numerical tests on theoretical geophysical data and field geophysical data obtained ideal results.
出处 《石油物探》 EI CSCD 北大核心 2015年第1期24-35,共12页 Geophysical Prospecting For Petroleum
基金 国家自然科学基金项目(41374001)资助
关键词 地球物理数据 高效采集 稀疏性 随机采样 数据重构 geophysical data high efficient acquisition sparsity random sampling data recovery
作者简介 陈生昌(1965-),男,教授,博士生导师,主要从事勘探地球物理和计算地球物理研究工作。
  • 相关文献

参考文献24

  • 1Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candès E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Candès E,Romberg J,Tao T.Stable signal recovery form incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1233.
  • 4Baraniuk R.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-120.
  • 5Baraniuk R.More is less:signal processing and the data deluge[J].Science,2011,331(2):717-719.
  • 6Herrmann F,Erlangga Y,Lin T.Compressive simultaneous full-waveform simulation[J].Geophysics,2009,74(4):35-40.
  • 7Lin T,Lebed E,Erlangga Y,et al.Interpolation solution of the Helmholtz equation with compressed sensing[J].Expanded Abstracts of 78th Annual Internat SEG Mtg,2008,2122-2126.
  • 8Neelamani R,Krohn C,Krebs J,et al.Efficient seismic forward modeling using simultaneous random sources and sparsity[J].Expanded Abstracts of 78th Annual Internat SEG Mtg,2008,2107-2111.
  • 9Ma J,Plonka G,Chauris H.A new sparse representation of seismic data using adaptive easy-path wavelet transform[J].IEEE Geoscience and Remote Sensing Letters,2010,7(3):540-544.
  • 10Herrmann F.Randomized sampling and sparsity:getting more information from fewer samples[J].Geophysics,2010,75(6):173-187.

二级参考文献26

共引文献54

同被引文献90

引证文献17

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部