期刊文献+

应用局部结构与方向张量的图像分割算法研究 被引量:1

The research of local structure and directional tensor in image segmentation algorithm
在线阅读 下载PDF
导出
摘要 图像分割问题是计算机视觉领域研究的基础性问题。针对实际图像中无纹理对象的浅阴影分割过程,通常会假设这些对象为同性质分段状态,而基于这种假设条件的图像分割方法有可能会产生图像分割偏差。本文方法通过放宽同性质均匀假设条件,针对图像强度进行不均匀平滑处理。本文所提算法应用图像中对象强度的分布一致性,采用新型平滑度计算方法来提高图像分割效果。根据待分割图像局部结构来计算分布一致性,图像分割过程中则应用贝叶斯框架。同已有研究成果比较了Hessian矩阵和方向张量的分割效果,通过在人工图像和真实图像上的实验结果表明,本文所提算法相较全局阈值与多层次逻辑马尔科夫随机域模型能够得到更好的图像分割效果。 Image segmentation is a basic problem in computer vision research.For the light shadow segmentation process of no texture objects in actual images,we usually assume that these objects are in segmentation with same nature.However,it will generate segmentation deviation basing on this assumption condition.In this paper,our method can be used for image intensity non-uniform smoothing through broadening same nature uniform assumption condition.In order to improve the effect of image segmentation,the proposed algorithm uses uniform distribution of object intensity in the image and adopts a new smoothness calculation method.The Bayesian framework is applied in the process of image segmentation.We calculate the uniform distribution according to the local structure of image segmentation.Based on artificial and real images,the paper had been conducted comparative evaluation of Hessian matrix and orientation tensor segmentation.The experimental results show that our proposed algorithm significantly outperforms the global threshold and Multi-level logic Markov random field model.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期111-117,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61402192) 江苏省"青蓝工程" 江苏省"六大人才高峰"
关键词 图像分割 HESSIAN矩阵 方向张量 极大似然估计 MRF模型 image segmentation Hessian matrices directional tensor maximum likelihood estimation MRF model
作者简介 通讯联系人,E-mail:106994961@qq.com
  • 相关文献

参考文献2

二级参考文献32

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:30
  • 2高丽,杨树元,夏杰,王诗俊,梁军利,李海强.基于标记的Watershed图像分割新算法[J].电子学报,2006,34(11):2018-2023. 被引量:34
  • 3L Vincent, P Soille. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1991, 13 (6) :583 - 598.
  • 4P Soille. Morphological Image Analysis Principles and Applications[M]. Berlin, Germany:Springer Verlag, 1999. 123 - 140.
  • 5P Soille. Morphological image analysis applied to crop field mapping[J].Image and Vision Computing, 2000,18 ( 13 ) : 1025 - 1032.
  • 6H D Cheng, Y Sun. A hierarchical approach to color image segmentation using homogeneity[J]. IEEE Transactions on Image Process, 2000,9(12) : 2071 - 2082.
  • 7L Patino. Fuzzy relations applied to minimize over segmentation in watershed algorithm[J].Pattern Recognition Letters, 2005, 26(6) :819 - 828.
  • 8J F Ning, L Zhang, D Zhang, et al. Interactive image segmen- tation by maximal similarity based region merging[ J ]. Pattern Recognition, 2010,43(2) :445 - 456.
  • 9R C Gonzalez, R E Woods. Digital Image Processing (Second Edition) [M]. Beijing, Publishing House of Electronics Industry,2007. 123 - 124.
  • 10D Marfin,C Fowlkes,D Tal,et al.A Database of Human Segmented Natural and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[ A ]. IEEE 8th International Conference on Computer Vision (ICCV2001) [ C]. Vancouver, Canada, 2001.416 - 423.

共引文献42

同被引文献20

  • 1Pedersen T R, Gerken E A. Creation of visible arti{ieial optical emission in the aurora by high power radio waves. Nature, g005, 433 (7025) : 498--500.
  • 2Hu Z J, Yang H, Huang D, et al. Synoptic distribution of dayside aurora: Multiple-wavelength albsky observation at Yellow River Station in Ny- Alesund, Svalbard. Journal of Atmospheric and Solar-terrestrial Physics, 2009,71 (89) : 794 -- 804.
  • 3Lorentzen D A, Moen J, Oksavik K, et al. In si- tumeasurement of a newly created polar cap patch. Journal of Geophysical Research, 2010, A12:115.
  • 4Zhang Q H,Zhang B C,Michael L,et al. Direct ob- servations of the evolution of polar cap ionization patches. Science, 2013,339 .. 1597-- 1600.
  • 5Syrjasuo M, Partamies N. Numeric image features for detection of aurora. Geoscience and Remote Sensing Letters, 2012,9 ( 2 ) : 176 -- 179.
  • 6王倩,梁继民,高新波等.基于表象特征的极光图形分类方法研究.第12届全国日地空间物理学术研讨会论文摘要集,2010,72(5):498-508.
  • 7Fu R, Li J, Gao X B, et al. Automatic aurora images classification algorithm based on separa- ted texture. In:Proceedings of IEEE International Conference on Robotics and Biomimetics. Guilin, China .- ISSN, 2009,1331 -- 1335.
  • 8Wang Y R,Gao X B,Fu R. Dayside corona aurora classification based on X-gray level aura matrices. In: Proceedings of the ACM Interna- tional Conference on Image and Video Retrieval. Xi'an : ACM, 2010,282 -- 287.
  • 9Han B, Zhao X, Tao D, et al. Dayside aurora classification via BIFs-based sparse representation using manifold learning. International Journal of Computer Mathematics, 2013,91 ( 11 ) : 2415 -- 2426.
  • 10Yang Q. Auroral events detection and analysis based on ASI and UVI images. Doctoral Dissertation. Xian : Xidian University, 2013.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部