期刊文献+

基于社会化评分和标签的个性化推荐方法 被引量:4

A Personalized Recommendation Method Based on Social Rating and Ragging User Group
在线阅读 下载PDF
导出
摘要 针对实际应用中由于用户和资源数量十分庞大产生的数据稀疏的问题,本文通过建立基于标签的群体用户模型进行资源推荐。首先定义了用户群体的概念,研究利用用户的特征属性发现用户群体,建立基于群体的用户模型,然后融合社会化评分和标签计算用户对资源的兴趣度。实验证明,利用群体用户模型的特点能有效缓解用户数据稀疏的问题,提高推荐效果。 In the practical application, the quantity of users and resources is very large. User data can become extremely sparse, so we put forward a user interest model based on group effect for resource recommendation. First, we defined the concept of user groups. Then we study on the characteristics of user attributes to found user groups, and build a model based on user groups. Finally, we use social tag and rating data to predict user interest in resource and recommend it to user. Experiment shows that the characteristics of user group model can effectively alleviate the problem of user data sparseness, and improve the accuracy of recommendation results.
出处 《情报学报》 CSSCI 北大核心 2014年第12期1302-1310,共9页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金(71071141);国家科技支撑计划项目(2014BAH24F006);浙江省自然科学基金项目(LY14F020002);本文是教育部人文社科重点研究基地浙江工商大学现代商贸研究中心和浙江省2011协同创新中心-现代商贸流通体系建设协同创新中心的资助课题成果(14SMXY04YB)。
关键词 社会化评分 标签 用户群 推荐 social rating ragging user group recommendation
作者简介 琚春华,男,1962年生,博士,教授,博士生导师,主要研究方向:数据挖掘与商务智能。 鲍福光,男,1986年生,博士研究生,主要研究方向:数据挖掘、电子商务与物流优化,E-mail:baofuguang@126.com。 刘中军,男,1989年生,硕士研究生,主要研究方向:个性化信息推荐。
  • 相关文献

参考文献16

  • 1Zhang Z K,Liu C. A hypergraph model of social tagging networks [ J]. Journal of Statistical Mechanics Theory and Experiment,2010 ( 10 ) : 10005-10011.
  • 2TsoSutter H L, Marinho L B, Schmidt-Thieme L. Tag- aware recommender systems by fusion of collaborative filtering algorithms[ C]//Proceedings of ACM Symposium Applied Computing. New York, ACM 2008: 1995-1999.
  • 3Tsai F S. A tag-topic model for blog mining [ J]. Expert Systems with Applications, 2011,38 (4) :5330-5335.
  • 4易明,王学东,邓卫华.基于社会网络分析的社会化标签网络分析与个性化信息服务研究[J].中国图书馆学报,2010,36(2):107-114. 被引量:34
  • 5毛进,易明,操玉杰,沈劲枝.一种基于用户标签网络的个性化推荐方法[J].情报学报,2012,31(1):23-30. 被引量:9
  • 6Au Yeung C M,Cibbins N,Shadbolt N. Multiple interests of users in collaborative tagging systems [ C]//King I,Baeza-Yates R. Weaving services and people on the World Wide Web. Springer-Verlag,2009:255-274.
  • 7Zlen Y, li W J, Yeung D Y. Tagico: Tag informed collaborate filtering [ C ]//Proceedings of the 5th ACM Conference on Recommender Systems. New York, NY, USA ,2009:69-76.
  • 8Chikhaoui B, Wang S, Pigot H. ADR-SPLDA: Activity discovery and recognition by combining sequential patterns and latent Dirichlet allocation[J]. Pervasive and Mobile Computing ,2012,8:845-852.
  • 9Kim H N, Alkhaldi A, E1 Saddik A, Jo Geun-Sik. Collaborative user modeling with user-generated tags for social recommender systems [ J ]. Expert Systems with Applications ,2011,2 ( 32 ) :564-572.
  • 10张斌,张引,高克宁,郭朋伟,孙达明.融合关系与内容分析的社会标签推荐[J].软件学报,2012,23(3):476-488. 被引量:42

二级参考文献66

  • 1彭泗清.信任的建立机制:关系运作与法制手段[J].社会学研究,1999(2):55-68. 被引量:389
  • 2刘涛,陈忠,陈晓荣.复杂网络理论及其应用研究概述[J].系统工程,2005,23(6):1-7. 被引量:152
  • 3Begelman G, Keller P, Smadja F. Automated tag clustering: Improving search and exploration in the tag space [ C ]. In Proceedings of the Collaborative Web Tagging Workshop at WWW'06, 2006.
  • 4Kome S H. Hierarchical subject relationships in folksonomies [ D]. North Carolina: the University of North Carolina, 2005.
  • 5伊凡艾琳达.社会网络分析在信息科学中的应用和发展[OL].[2009-05-30].http://blog.zjol.com.cn/1185/viewspace-243513.
  • 6Wasserman S, Faust K. Social network analysis: Methods and applications [ M ]. Cambridge : Cambridge University Press, 1994.
  • 7Fan Bei, Liu Lu, Li Ming, et al. Knowledge recommendation based on social network theory [ C ]. In 2008 IEEE Symposium on Advanced Management of Information for Globalized Enterprises, 2008 : 322 - 324.
  • 8Shepitsen A, Gemmell J, Mobasher B, et al. Personalized recommendation in social tagging systems using hierarchical clustering [ C ]. In Proceedings of the 2008 ACM conference on Recommender systems, 2008 : 259 - 266.
  • 9Croft W, Metzler D, Strohman T. Search Engines : Inform- ation Retrieval in Practice[M ].北京:机械工业出版社,2009:106-111.
  • 10Wu P,Zhang Z. Enhancing personalized recommendations on weighted social tagging networks [ J ]. Physics Proce- dia,2010 (3) :1877-1885.

共引文献194

同被引文献33

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部