期刊文献+

一种赋权的分数交换期权定价模型

A Weighted-fractional Model to Exchange Option Pricing
在线阅读 下载PDF
导出
摘要 研究了赋权分数布朗运动环境下的欧式交换期权定价问题。假设两种股票的价格过程都服从赋权分数布朗运动驱动的随机微分方程,利用保险精算的定价方法得到了交换期权的定价公式。 The problem of pricing exchange options in weighted fractional Brownian motion environment was considered in the paper. Under the condition that the two stock pricing processes obey the stochastic differential equation driven by weighted fractional Brownian motion, the pricing formula of exchange op- tions was obtained via insurance actuary pricing.
出处 《蚌埠学院学报》 2015年第1期27-30,共4页 Journal of Bengbu University
基金 国家自然科学基金(11426036) 安徽省自然科学基金(1408085QA10) 国家级大学生创新创业训练计划项目(201411305017) 省级教学质量工程项目(2012jyx559) 蚌埠学院院级教学团队(2013jxtd02)
关键词 赋权分数布朗运动 长程相依 交换期权 期权定价 保险精算 weighted fractional Brownian motion long-range dependence exchange option option pricing insurance actuary
作者简介 孙西超(1981-),男,安徽临泉人,讲师,博士。E—mail:sunxicha0626@126.com
  • 相关文献

参考文献14

  • 1Black F, Cox J C. The pricing of options and corporate lia- bilities[ J]. Journal of Political Economy, 1973,81 ( 3 ) :637 - 659.
  • 2Tabak B M, Cajueiro D O. Long-range dependence and multifractality in the term structure of LIBOR interest rates [ J ]. Physica A,2007,373 ( 1 ) : 603 - 614.
  • 3Cajueiro D O, Tabak B M. Long-range dependence and market structure [ J ]. Chaos Solitons and Fractals, 2007,31 (4) :995 - 1000.
  • 4Hsieth D A. Chaos and non-linear dynamics:Applications to financial market [ J ]. Journal of Finance, 1991,46 ( 5 ) : 1839 - 1877.
  • 5Ozdemir Z A, Tabak B M. Linkages between international stock markets: A multivariate long-range approach [ J ]. Physica A,2009,388(4) :2461 -2468.
  • 6Hu Y, Oksendal B. Fractional white noise calculus and ap- plications to finance [ J ]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003,6 ( 1 ) : 1 - 32.
  • 7Deng G, Lin H. Pricing American put option in a fractional Black-Scholes model via compound option[ J]. Advances in Systems Science and Applications,2008,8 ( 3 ) :447 - 456.
  • 8沈明轩,何朝林.分数布朗运动环境中几何平均亚式期权的定价[J].山东大学学报(理学版),2013,48(3):48-52. 被引量:12
  • 9Bojdecki T, Gorostiza L, Talarczyk A. Occupation time lim- its of inhomogeneous Poisson systems of independent parti- cles [ J ]. Stochastic Processes and their Applications ,2008, 118(1) :28 -52.
  • 10Bojdecki T, Gorostiza L, Talarczyk A. Some extension of fractional Brownian motion and sub-fractional Brownian motion related to particle systems [ J ]. Electronic Communi- cations in Probability ,2007,12 (2) : 161 - 172.

二级参考文献12

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部