期刊文献+

网络文本蕴涵地理信息抽取:研究进展与展望 被引量:41

Extracting Geographic Information from Web Texts: Status and Development
原文传递
导出
摘要 互联网的普及产生了大量蕴含着丰富地理语义的文本,为地理信息的深度挖掘和知识发现带来了巨大机遇。同时,蕴含地理语义文本的异构性和动态性,使得地理实体的属性数量和种类激增、地理语义关系复杂,对地理信息检索、空间分析和推理、智能化位置服务等提出了严峻的挑战。本文阐述了网络文本蕴含地理信息抽取的技术流程,从地理实体识别、地理实体定位、地理实体属性抽取、地理实体关系构建、地理事件抽取5个方面总结了网络文本蕴含地理信息抽取的进展和关键技术瓶颈,分析了可用于网络文本蕴含地理信息抽取的开放资源,并展望了未来的发展方向。 Internet generates a plenty of texts which contain abundant geographic semantic information, and bring massive opportunities for deep mining and knowledge discovery. Meanwhile, heterogeneous and dynamic web texts make a surge in the number and type of geographic entity's attributes and the complexity of geographic semantic relations, which present a unprecedented challenge to geographic information retrieval, spatial analysis and reasoning, and intelligent location based services. Firstly, we describe the process of extracting geopgraphic informantion from web texts, summarize the research status and major issues which include geographic entity recognition, locating, attribute extraction, relation construction and event extraction. Secondly, we introduce some popular open sources used for geographic information extraction. Lastly, we discuss and look ahead to the development trends of this domain in future.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第2期127-134,共8页 Journal of Geo-information Science
基金 国家"863"计划项目(2012AA12A211 2013AA120305)
关键词 网络文本 地理信息 自然语言处理 信息抽取 地理定位 web text geographic information natural language processing infromation extraction geographi-cal location
作者简介 余丽(1986-),博士生,研究方向为互联网空间信息搜索。E-mail:yul@lreis.ac.cn 通讯作者:陆锋(1970-),博士,研究员,博士生导师。研究方向为导航与位置服务、空间数据库技术、交通地理信息系统等。E-mail:luf@lreis.ac.cn
  • 相关文献

参考文献62

  • 1Sanderson M,Kohler J.Analyzing geographic queries[C].SIGIR Workshop on Geographic Information Retrieval,2004.
  • 2Piskorski J,Yangarber R.Information extraction:Past,present and future[C].Multi-source,Multilingual Information Extraction and Summarization.Berlin Heidelberg:Springer-Verlag,2013:23-49.
  • 3赵军,刘康,周光有,蔡黎.开放式文本信息抽取[J].中文信息学报,2011,25(6):98-110. 被引量:62
  • 4刘振,张智雄.开放信息抽取技术的现状研究[J].情报杂志,2013,32(11):145-148. 被引量:3
  • 5Oren E,Michael C,Doug D,et al.Unsupervised named-entity extraction from the Web:An experimental study[J].Artificial Intelligence,2005,165(1):91-134.
  • 6Joanna B,Erdal K,Fabian M S.Inside YAGO2s:A transparent information extraction architecture[C].Proceedings of the 22nd International Conference on World Wide Web Companion,2013:325-328.
  • 7Daniel S W,Raphael H,Fei Wu.Using Wikipedia to bootstrap open information extraction[C].ACM SIGMOD Record,2008,37(4):62-68.
  • 8Michele B,Michael J C,Stephen S,et al.Open information extraction from the Web[C].Proceedings of the 20th International Joint Conference on Artificial Intelligence,2007:2670-2676.
  • 9Oren E,Anthony F,Janara C,et al.Open information extraction:The second generation[C].Proceedings of the 22nd International Joint Conference on Artificial Intelligence,2011:3-10.
  • 10Fei Wu,Daniel S W.Open information extraction using Wikipedia[C].Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,2010:118-127.

二级参考文献387

共引文献597

同被引文献473

引证文献41

二级引证文献430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部