期刊文献+

隔壁精馏塔的设计、模拟与优化 被引量:6

Design,Simulation and Optimization of Divided Wall Column
在线阅读 下载PDF
导出
摘要 针对隔壁精馏塔节能工艺,提供了一套完整的设计优化方法.首先基于Fenske-Underwood-GillilandKirkbride方程建立了完整的简捷设计方法,得到了隔壁精馏塔塔实际理论板数、适宜的进料位置、侧线采出位置及回流比等参数.然后在简捷计算的基础之上,选用Multifrac模型对隔壁塔进行了严格计算模拟,同时利用Aspen Plus进行单因素优化分析得到最优设计参数.最后利用响应面优化法(RSM)中的箱线图设计(BBD)方法对隔壁精馏塔设计参数进行了实验设计,在验证模型有效的基础上运用Design-Expert软件进行数据处理,预测出了最优设计参数,并将预测值进行实验验证,将验证结果与单因素优化结果进行对比,结果表明响应面优化法得到的最优设计参数使隔壁塔的能耗较低、纯度较高. A set of comprehensive methods was proposed for the design and optimization of divided wall col- umn (DWC). A short-cut design method based on Fenske-Underwood-Gilliland-Kirkbride equations for DWC was used to get initial values of design parameters of theoretical stages, feed stage, side-product stage, reflux ratio and so on. With the initial values of all parameters from short-cut design, rigorous simulation of DWC was carried out using Multifrac model. The optimization result was obtained through single-factor experiment using Aspen Plus. In the last stage, Box-Behnken design (BBD)under response surface methodology (RSM)was used for the optimization of DWC and to evaluate the effects of parameters and their interactions on energy efficiency and product purity. Design- Expert software was used to tackle experiment data and predict optimization result based on significant model. Comparing the optimization result of single-factor experiment and RSM, we found that RSM could render more optimized result in respect of energy saving and high purity.
作者 黄国强 靳权
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2014年第12期1057-1064,共8页 Journal of Tianjin University:Science and Technology
关键词 隔壁精馏塔 简捷设计 严格模拟 响应面法 divided wall column short-cut design rigorous simulation response surface methodology (RSM)
作者简介 黄国强(1973-),男,博士,副教授,hgq@tju.edu.cn. 通讯作者:靳权,jinquan95@163.com.
  • 相关文献

参考文献14

  • 1Wright R O. Fractionation Apparatus : US, 2471134 [P]. 1949-05-24.
  • 2Muralikrishna V K, Madhavan K P, Shah S S. Devel- opment of dividing wall distillation column design space for a specified separation [J]. Institution of Chemical En- gineers, 2002, 80(2): 155-165.
  • 3Isopescu R, Woinaroschy A, Draghiciu L. Energy re- duction in a divided wall distillation column [J]. Rev Chim, 2008, 49(2): 812-815.
  • 4Asprion N, Kaibel G. Dividing wall columns: Fundamentals and recent advances [J]. Chemical Engi- neering and Processing: Process Intensification, 2010, 49(2): 139-146.
  • 5Long N V D, Lee S, Lee M Y. Design an optimization of a dividing wall column for debottlenecking of the ace- tic acid purification process [J]. Chemical Engineering and Processing: Process Intensification, 2010, 49 (8) : 825-835.
  • 6Dunnebier G, Pantelides C C. Optimal design of ther-mally coupled distillation columns [J]. Ind Eng Chem Res, 1999, 38(1): 162-176.
  • 7Long N V D, Lee M Y. Dividing wall column structure design using response surface methodology [J] . Com- puters and Chemical Engineering, 2012, 37(1): 119- 124.
  • 8Murat E. Optimization of medium composit-ion for acti- norhodin production by Streptomyces coelicolor A3 (2)with response surface methodology [J]. Process Biochemistry, 2004, 39(9): 1057-1062.
  • 9罗批,郭继昌,李锵,滕建辅.基于偏最小二乘回归建模的探讨[J].天津大学学报(自然科学与工程技术版),2002,35(6):783-786. 被引量:69
  • 10Dejanovic I, Matijasevic L. Dividing wall column: A breakthrough towards sustainable distilling [J]. Chemical Engineering and Processing, 2010, 49 (6) : 550-580.

二级参考文献17

  • 1约翰.内特 张勇(译).应用线形回归模型[M].北京:统计出版社,1992..
  • 2Montgomery D C. Design and Analysis of Experiments [M]. 6th ed.New York: John Wiley & Sons Inc,2004.
  • 3Jeff Wu C F,Hamada M.试验设计与分析及参数优化[M].北京:中国统计出版社,2003.
  • 4Box G E P, Hunter J S, Hunter W G. Statistics for Experimenters: Design , Innovation , and Discovery [M]. New York:John Wiley & Sons Inc, 2005.
  • 5Box G E P, Gardiner C J.Constrained Designs ( Part Ⅰ):First Order Designs [R]. Department of Statistics, University of Wisconsin, 1966 : 1-48.
  • 6Hau I,Box G E P.Experimental designs when there are one or more factor constraints [J]. Journal of Applied Statistics, 2001,28 ( 8 ): 973-989.
  • 7Taguchi G. System of Experimental Design [M]. White Plains, NY. UNIPUB/Kraus International Publications, 1987.
  • 8Montgomery D C, Loredo E N, Jearkpaporn D. Experimental designs for constrained regions [J]. Quality Engineering, 2002, 14: 581-601.
  • 9Hamada M, Wu C F J.The treatment of related experimental factors by sliding levels [J]. Journal of Quality Technology, 1995,27 : 45-55.
  • 10Cheng S W,Wu C F J,Huwang L.Statistical modeling for experiments with sliding levels [J]. IMS Lecture Notes Monograph Series, 2006,52 : 245-256.

共引文献71

同被引文献70

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部