期刊文献+

三维多级孔类石墨烯载三氧化二铁锂离子电池负极材料 被引量:6

Nanosized Fe_2O_3 on Three Dimensional Hierarchical Porous Graphene-Like Matrices as High-Performance Anode Material for Lithium Ion Batteries
在线阅读 下载PDF
导出
摘要 采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料.3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料.Fe2O3-3D HPG电极在50m A·g-1电流密度下首次放电容量达1745 m Ah·g-1,50周期放电容量保持于1095 m Ah·g-1. Ferric oxide (Fe2O3) as a promising anode material for lithium ion battery is due to its high theoretical capacity (1007 mAh·g^--1), earth abundance and low cost. The nanosized Fe2O3 on the three dimensional hierarchical porous graphene-like network (denoted as Fe2O3-3D HPG) has been synthesized by homogeneous precipitation and heat treatment. The 3D HPG can provide a highly conductive structure in conjunction to support well contacted Fe2O3 nanoparticles, and effectively enhance the mechanical strength of the matrices during volume changes as well as improve the utilization rate of Fe2O3 and suppress the aggregation of Fe2O3 nanoparticles during Li ion insertion/extraction. As a result, the first discharge capacity of Fe2O3-3D HPG was up to 1745 mAh.g^-1 at 50 mA.g^-1, and after 50 cycles, the retention of the capacity was 1095 mAh.g^-1.
出处 《电化学》 CAS CSCD 北大核心 2015年第1期66-71,共6页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.21073241 No.51210002)资助
关键词 FE2O3 负极材料 锂离子电池 三维多级孔类石墨烯材料 电化学 Fe2O3 anode materials Li ion batteries three dimensional hierarchical porous graphene-like matrix electrochemistry
作者简介 通讯作者,Tel:(86—20)84036736,E—mail:stsspk@mail.sysu.edu.cn
  • 相关文献

参考文献29

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
  • 2Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe203 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.
  • 3Buqa H,Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries [J]. Journal of The Electrochemical Society, 2005, 152 (2): A474-A481.
  • 4Aricd A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature materials, 2005,4(5): 366-377.
  • 5Jang B, Park M, Chae O B,et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes [J]. Journal of the American Chemical Society, 2012, 134(36): 15010-15015.
  • 6Kwon K A,Lim H S, Sun Y K, et al. a -Fe203 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries [J]. The Journal of Physical Chemistry C, 2014,118(6): 2897-2907.
  • 7Zhao B, Liu R, Cai X, et al. Nanorod-like Fe203/graphene composite as a high-performance anode material for lithium ion batteries [J]. Journal of Applied Electrochemistry2014, 44(1): 53-60.
  • 8Luo J, Liu J, Zeng Z,et al. Three-dimensional graphene foam supported Fe304 lithium battery anodes with long cycle life and high rate capability[J]. Nano letters, 2013, 13(12): 6136-6143.
  • 9He C, Wu S,Zhao N,et al. Carbon-encapsulated Fe304 nanoparticles as a high-rate lithium ion battery anode ma-terialfJ]. ACS Nano, 2013,7(5): 4459-4469.
  • 10Y Li, Q Zhang, Zhu J, et al. An extremely stable Mn02 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014,2(9): 3163-3168.

二级参考文献78

  • 1Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
  • 2Fan, Y.; Huang, K.; Zhang, Q.; Xiao, Q. Z.; Wang, X. X.; Chen, X. D. Novel silicon-nickel cone arrays for high performance LIB anodes. J. Mater. Chem. 2012, 22, 20870-20873.
  • 3Xu, J. J.; Wu, H. Y.; Wang, F.; Xia, Y. Y.; Zheng, G. F. Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201200564.
  • 4Lahann, J. Environmental nanotechnology: Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320-321.
  • 5Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen. W. J. Low- temperature oxidation of CO catalysed by CO304 nanorods. Nature 2009, 458, 746-749.
  • 6Chert, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. a-FezO3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.
  • 7Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multi-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738-2741.
  • 8Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.; Wang, D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 2011, 7, 578-582.
  • 9Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesisof highly photoactive a-Fe203-based films for water oxidation. Nano Lett. 2011, 11, 3503-3509.
  • 10Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.

共引文献22

同被引文献33

  • 1耿桂宏,罗绍华,邓丽娜,宋亚鹏.丙烯酸络合法制备锂离子电池负极材料ZnMn_2O_4[J].稀有金属材料与工程,2013,42(S1):280-283. 被引量:1
  • 2Kringstad K P, Lindstram K. Spent liquors from pulp bleaching[J]. Environmental Science & Technology, 1984, 18(8): 236-248.
  • 3Muna G W, Tasheva N, Swain G M. Electro-oxidation and amperometric detection of chlorinated phenols at boron- doped diamond electrodes: A comparison of microcrys-talline and nanocrystalline thin films[J]. Environmental Science & Technology, 2004, 38(13): 3674-3682.
  • 4Erkan S, Filiz B D. Effect of biogenic substrate concentra-tion on the performance of sequencing batch reactor treat-ing 4-CP and 2,4-DCP mixtures[J]. Journal of Hazardous Materials, 2006, 128(2/3): 258-264.
  • 5Li X Y, Xue A F, Chen H, et al. Low-density sol- vent-based dispersive liquid-liquid micro extraction com-bined with single-drop microextraction for the fast deter- mination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection[J]. Journal of Chromatography A, 2013, 1280: 9-15.
  • 6Masoumeh H, Mahsa M. Application of principal compo-nent-artificial neural network models for simultaneous de-termination of phenolic compounds by a kinetic spec- trophotometric method[J]. Journal of Hazardous Materials, 2008, 157(1): 161-169.
  • 7Xu Q, Li X J, Zhou Y E, et al. An enzymatic amplified system for the detection of 2, 4-dichlorophenol based on graphene membrane modified electrode[J]. Analytical Me-thods, 2012,4(10): 3429-3435.
  • 8GeH (葛慧),Ling BH (李保华),Sun ZR (孙治荣).Re-search progress in removing chlorinated organic com- pounds by electrochemical process[J]. Environmental Pro-tection of Chemical Industry(ftXJf ft), 2008, 28(4): 317- 322.
  • 9AVang L(王亮),Lv Y Q(吕元琦),Yang Z B(袁倬斌),et al. Levodopa in single wall carbon nanotubes modified elec-trode electrochemical behavior[J]. 分析试验室,2006, 23(6): 13-15.
  • 10Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by- layer assembly of ultrathin composite films from mi- cron-sized graphite oxide sheets and placations[J]. Chem- istry of Materials, 1999, 11(3): 771-778.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部