期刊文献+

基于纹理抑制和连续分布估计的显著性目标检测方法 被引量:7

Significant target detection method based on texture inhibition and continuous distribution estimation
在线阅读 下载PDF
导出
摘要 为了取得更好的显著性检测结果,针对传统的显著性检测方法易造成边界模糊以及应用中央-周边差进行图像检测时,感兴趣目标的内部纹理会破坏目标的整体性的问题,提出了一种基于纹理抑制和连续分布估计的显著性检测方法。先对图像进行双边滤波的预处理,以平滑目标以及背景区域内部的纹理扰动,保留目标与背景之间的主要边缘。再采用SLIC超像素分割算法,对图像中具有相同特征的像素进行分组,通过多维正态分布提取分割区域的特征,利用二范数Wasserstein距离计算区域相似度:结合局部显著性检测以及全局显著性检测实现目标区域的提取。实验结果表明,本文的方法能够较好地提取显著性目标区域。 The traditional methods of saliency detection tend to blur the border and internal texture of interested target,which usually destroys the integrity of the target by applying the center-surround differences.As to this problem,this paper proposes a saliency detection method based on texture inhibition and continuous distribute estimation in order to obtain better saliency detection results.This paper proposes a saliency detection method based on texture inhibition and continuous distribute estimation.Firstly,bilateral filter is used to smooth texture disturbances of the target and background region,while retaining the major edges between the target and background.Then SLIC superpixel image segmentation algorithms are used to divide the pixels into groups which have lots of pixels with the same characteristics.Then features of segment region are extracted by multidimensional normal distribution,and the similarity of feature saliency is calculated by two norm Wasserstein distance.At last,saliency region can be extracted by the local and global saliency detection.The experiment result shows that the experiment method in this paper can extract saliency region effectively.The experiment results show that our method can obtain better detection result.
出处 《液晶与显示》 CAS CSCD 北大核心 2015年第1期120-125,共6页 Chinese Journal of Liquid Crystals and Displays
基金 湖北省自然科学基金(No.2013CFB333) 高等学校博士学科点专项科研基金(No.20124219120002) 湖北省教育厅科研计划(No.Q20131110)
关键词 显著性检测 背景先验 Wasserstein距离 正态分布 saliency detection background prior Wasserstein distance normal distribution
作者简介 通信联系人,E—mail:527693165@qq.com,邓丹(1988-),女,湖北仙桃人,硕士研究生,从事图像处理与计算机视觉研究工作。E—mail:527693165@qq.com 吴谨(1967-),女,安徽芜湖人,博士生导师,从事图像处理与模式识别研究工作。 朱磊(1982-),男,湖北武汉人,博士生,从事图像处理与机器学习研究工作。 刘劲(1982-),男,湖南娄底人,讲师,从事航空航天研究工作。
  • 相关文献

参考文献18

  • 1Hou X,Zhang L.Saliency detection:A spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007:1-8.
  • 2Hare J,Koch C,Perona P.Graph-based visual saliency[C].The 20th Annual Conference on Neural Information Processing Systems,2006:545-552.
  • 3Achanta R,Hemami S,Estrada F,et al.Frequency-tuned salient region detection[C].IEEE Conference on Computer Vision and Pattern Recognition,2009:1597-1604.
  • 4Goferman S,Zelnik-Manor L,Tal A.Context-aware saliency detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):1915-1926.
  • 5Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 6董宇星,刘伟宁.基于灰度特性的海天背景小目标检测[J].中国光学与应用光学,2010,3(3):252-256. 被引量:16
  • 7宋建中.图像处理智能化的发展趋势[J].中国光学,2011,4(5):431-440. 被引量:18
  • 8Zhang X N,Liu G Q,Hu Y,et al.A new two-sided coupling channel drop filter based on a two-dimensional photonic crystal[C].The 2nd International Conference on Opto-Electronics Engineering and Materials Research,2013:417-420.
  • 9Ren Z,Hu Y,Chia L T,et al.Improved saliency detection based on superpixel clustering and saliency propagation[C].The l8th Annual ACM International Conference on Multimedia,2010.
  • 10Achanta R,Shaji A,Smith K,etal.SLIC superpixels compared to state-of-the-art superpixel methods[C].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012:2274-2281.

二级参考文献19

共引文献32

同被引文献64

  • 1刘明,赵孝磊.一种改进的Camshift目标跟踪算法[J].南京理工大学学报,2013,37(5):755-760. 被引量:9
  • 2闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 3董恩增,闫胜旭,佟吉钢.基于主动视觉的人脸检测与跟踪算法研究[J].系统仿真学报,2015,27(5):973-979. 被引量:7
  • 4ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998,20(11): 1254-1259.
  • 5LIU T, YUAN Z, SUN J, et al.. Learning to detect a salient object [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.
  • 6ACHANTA R, HEMAMI S, ESTRADA F, et al.. Frequency-tuned salient region detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604.
  • 7HOU X, ZHANG L. Saliency detection: A spectral residual approach [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 8RAO A R. A Taxonomy for Texture Description and Identification [M]. Springer Science & Business Media, 2012.
  • 9FELZENSZWALB P, HUTTENLOCHER D P. Efficient graph-based image segmentation [J]. International Journal of Computer Vision, 2004, 59(2): 167-181.
  • 10FAIRCHILD M D. Color Appearance Models [M]. New Jersey:John Wiley & Sons, 2013.

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部