期刊文献+

用于调制宽带转换器压缩频谱感知的重构失败判定方法 被引量:9

A Reconstruction Failure Detection Scheme for Modulated Wideband Converter Based Compressed Spectrum Sensing
在线阅读 下载PDF
导出
摘要 调制宽带转换器(Modulated Wideband Converter,MWC)压缩采样应用于频谱感知的一个基本前提是信号在频域上的稀疏性。如果信号不稀疏,将导致MWC重构结果不正确。该文提出了一种MWC压缩采样重构成败的判定方法。该方法利用连续两次重构得到的子带能量之间的相关性进行判决。仿真结果表明,该方法能够较准确地判断重构是否成功,应用于认知无线电频谱感知中能够避免频谱不稀疏时认知用户对主用户造成干扰,达到保护主用户的目的。 A basic premise for Modulated Wideband Converter(MWC) applying to spectrum sensing is that the signal spectrum is sparse. Otherwise, the reconstruction result will be incorrect. A method of judging whether the reconstruction is successful is proposed for MWC compressed sensing. It utilizes the correlation between two consecutive reconstructed subband energy. Simulation results show that the method can judge whether the reconstruction is successful with high accuracy, and can reduce the interference probability with primary users when the spectrum is not that sparse.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第1期236-240,共5页 Journal of Electronics & Information Technology
基金 通信信息控制和安全技术重点实验室基金资助课题
关键词 认知无线电 频谱感知 压缩感知 调制宽带转换器 Cognitive radio Spectrum sensing Compressed sensing Modulated Wideband Converter(MWC)
作者简介 郑仕链:男,1984年生,博士生,研究方向为认知无线电、进化算法、压缩感知.通信作者:郑仕链 lianshizheng@126.com 杨小牛:男,1961年生,中国工程院院士,博士生导师,研究方向为软件无线电、通信信号处理.
  • 相关文献

参考文献16

  • 1Sun H, Nallanathan A, Wang C X, et al.. Wideband spectrum sensing for cognitive radio networks: a survey[J]. IEEE Wireless Communications, 2013, 20(2): 74-81.
  • 2Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Tian Z, Tafesse Y, and Sadler B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(1): 58-69.
  • 4Sun H, Chiu W Y, and Nallanathan A. Adaptive compressive spectrum sensing for wideband cognitive radios[J]. IEEE Communications Letters, 2012, 16(11): 1812-1815.
  • 5Yen C P, Tsai Y, and Wang X. Wideband spectrum sensingbased on sub-Nyquist sampling[J]. IEEE Transactions on Signal Processing, 2013, 61(12): 3028-3040.
  • 6Romero D and Leus G. Wideband spectrum sensing from compressed measurements using spectral prior information [J]. IEEE Transactions on Signal Processing, 2013, 61(24): 6232-6246.
  • 7Bai L and Roy S. Compressive spectrum sensing using a bandpass sampling architecture[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 433-442.
  • 8Tropp A, Laska N, Duaxte F, et al.. Beyond Nyquist: efficient sampling of sparse baudlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
  • 9Mishali M and Eldar Y C. From theory to practice: sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375-391.
  • 10Mishali M, Eldar Y C, and Elron A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734.

同被引文献34

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部