期刊文献+

一种基于CUDA的并行多目标进化算法 被引量:3

A parallel multi-objective evolutionary algorithm based on CUDA
原文传递
导出
摘要 传统的多目标进化算法多是基于Pareto最优概念的类随机搜索算法,求解速度较慢,特别是当问题维度变高,需要群体规模较大时,上述问题更加凸显。这一问题已经获得越来越多研究人员以及从业人员的关注。实验仿真中可以发现,构造非支配集和保持群体多样性这两部分工作占用了算法99%以上的执行时间。解决上述问题的一个有效方法就是对这一部分算法进行并行化改造。本文提出了一种基于CUDA平台的并行化解决方案,采用小生境技术实现共享适应度来维持候选解集的多样性,将多目标进化算法的实现全部置于GPU端,区别于以往研究中非支配排序的部分工作以及群体多样性保持的全部工作仍在CPU上执行。通过对ZDT系列函数的仿真结果,可以看出本文算法性能远远优于NSGA-Ⅱ和NPGA。最后通过求解油品调和过程这一有约束多目标优化问题,可以看出在解决化工应用中的有约束多目标优化问题时,该算法依然表现出优异的加速效果。 Most of the basic multi-objective evolutionary algorithm (MOEA) is one kind of similar random search algorithm base on the concept of the Pareto Optimization, which with the slowly speed. Especially the dimension of the problem becomes larger which needs a larger population, the effectiveness of MOEA become more prominent. This problem has been gaining increasing attention among researchers and practitioners. From the experiments, the procedure to build the non-dominated set and to maintain diversity are time-consuming, more than 99 % of the execution time is used in performing the two procedures. A promising approach to overcome this limitation is to paraUelize these algorithms. In this paper, we propose a parallel MOEA based on Compute Unified Device Architecture (CUDA). Fitness sharing which was based on niche technology is introduced to enhance population diversity. All steps of the parallel MOEA are performed on Graphics Processing Units (GPU). That's the difference between the previous studies which part of the procedure of building the non-dominated set and maintaining diversity is still executed on the CPU. Through the simulation of ZDT series test function and the analysis results with the NSGA-II and NPGA, it can be seen that the performance of the proposed algorithm is much better than the NSGA-II and NPGA with less run times. Finally, it is applied to constrained multi-objective optimization of gasoline blending, the algorithm shows better performance.
出处 《计算机与应用化学》 CAS 2015年第1期1-8,共8页 Computers and Applied Chemistry
基金 国家自然科学基金项目(U1162202 61222303) 上海市自然科学基金(15ZR1408900) 上海市"科技创新行动计划"研发平台建设项目(13DZ2295300) 上海市重点学科建设项目(B504)资助
关键词 多目标 进化算法 CUDA GPU 并行计算 Multi-objective evolutionary algorithms CUDA GPU parallel programming
作者简介 作者简介:胡宾宾(1988-),男,硕士,研究生,E-mail:hubinbinheda@126.com 联系人:祁荣宾,女,博士,副研究员.E-mail:qirongbin@ecust.edu.cn
  • 相关文献

参考文献19

  • 1蚁仲杰,祁荣宾,徐斌,程辉,钱锋.约束差分免疫克隆算法及其在汽油调合优化中的应用[J].华东理工大学学报(自然科学版),2013,39(3):311-318. 被引量:3
  • 2Brockoff D, Zitzler E. Are all objective necessary on dimensionality reduction in evolutionary multi-objective optima- zation//Proceedings of 9th International Conference on Parallel Problem Solving from Nature. Berlin: Springer, 2006:533-542.
  • 3Soares J, Vale Z, Canizes B, et al. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid schedu- ling//Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE Symposium on. IEEE, 2013:138-145.
  • 4Chuang H H, Wu S J, Hong M Z, et al. Power integrity chip-paekage-PCB co-simulation for I/O interface of DDR3 high-speed memory//Advanced Packaging and Systems Symposium, 2008. EDAPS 2008. Electrical Design of. IEEE, 2008:31-34.
  • 5Shah R, Narayanan P, Kothapalli K. GPU-accelerated genetic algorithms. Cvit Iiit Ac In, 2010. Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 1996, 26:30-45.
  • 6Deb K, Saxena D K. On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi- objective optimization problems, Technical Report 2005011. Kanpur: Indian Institute of Technology, 2005.
  • 7张庆科,杨波,王琳,朱福祥.基于GPU的现代并行优化算法[J].计算机科学,2012,39(4):304-310. 被引量:27
  • 8卢海,鄢烈祥,史彬,林子雄,李骁淳.并行多家族遗传算法解多目标优化问题[J].化工学报,2012,63(12):3985-3990. 被引量:6
  • 9王雷,赵龙,韩文报.基于GPU平台的模乘算法实现[J].信息工程大学学报,2010,11(4):462-465. 被引量:1
  • 10冯士刚,艾芊,王伟,徐伟华,凌晓波,刘蓓,王冲.基于伪并行NSGA-Ⅱ算法的火电站多目标负荷调度[J].上海交通大学学报,2008,42(3):421-425. 被引量:11

二级参考文献94

共引文献54

同被引文献19

  • 1Abdelkhalik O, Mortari D, Orbit design for ground surveillance using genetic algorithms [ J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (5) : 1231 -1235.
  • 2Zhu K, Li J, X H, et al. Satellite scheduling considering maximum observation eoverage time and minimum orbital transfer fuel cost [ J]. Aeta Astronaut, 2010, 66:220-229.
  • 3Hall L O, Ozyurt I B, Bezdek J C. Clustering with a genetically optimized approach [ J ]. IEEE Trans. on Evolutionary Computation, 1999, 3(7) : 103 - 112.
  • 4Brest J, Zumer V, Maucec M S. Self-adaptive differential evolution algorithm in constrained real-parameter optimization C ]. The IEEE Congress on Evolutionary Computation, Vancouver, BC, 2006.
  • 5Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [ J ]. Journal of Global Optimization, 1997, 11 (4) : 341 - 359.
  • 6Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms : a forward-looking approach [ C ]. Genetic and Evolutionary Computation Conference, Seattle,Washington, USA, 2006.
  • 7Mokhtari H. A nature inspired intelligent water drops evolutionary algorithm for parallel processor scheduling with rejection [ J]. Applied Soft Computing, 2015, 26 : 166 - 179.
  • 8王萍萍,潘丰.基于改进伪并行遗传算法的函数优化[J].江南大学学报(自然科学版),2010,9(1):11-15. 被引量:2
  • 9李玉庆,王日新,徐敏强,崔祜涛,王海波,徐瑞.基于改进遗传算法的一类多资源测控调度问题研究[J].宇航学报,2012,33(1):85-90. 被引量:22
  • 10仇丽青,梁永全,樊建聪.一种动态融合的并行混合进化算法EDAs/PSO[J].计算机应用与软件,2014,31(6):271-274. 被引量:2

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部