期刊文献+

一种新的粒子群拓扑设计准则 被引量:3

A New Design Criteria of Particle Swarm Topology
在线阅读 下载PDF
导出
摘要 粒子群优化算法的搜索性能取决于算法探索和开发能力的平衡,与算法所使用的拓扑结构相关。现有的粒子群拓扑结构不能较好地平衡算法的探索性能和开发能力。为此,依据低配位数、高堆积密度和3D结构等特征,提出一种新的拓扑设计准则。根据此准则,设计一种菱形十二面体的拓扑结构,该拓扑结构由球体按照六方晶格和面心立方结构堆积而成,是具有最大空间利用率的3D最密堆积结构,且拥有较低的平均配位数。实验结果表明,与现有的拓扑结构相比,该拓扑结构搜索到全局最优值的概率较高。 The ability of taking both the exploitation and exploration into account is a key to ensure good performance of the Particle Swarm Optimization(PSO)algorithm. This ability is to a large extent associated with the topological structures used in the algorithm. Most commonly used topologies are usually not quite favorable for assuring this ability,leading to the so-called dilemma of exploitation and exploration. This paper proposes a new design criteria for topologies by introducing such factors as low coordination number,high packing density and 3D structure. According to this rule,a new neighborhood topology for PSO is designed. The new topology,named rhombic dodecahedron,usually is used in crystallology and formed by packing spheres in hexagonal lattice and face-centered cubics,turns out to be of a 3D-close packing with the maximum space utilization with a low average coordination number. Experimental results on benchmark functions show that the proposed topology has a higher probability of finding the global optimum compared with existing topologies.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期200-206,222,共8页 Computer Engineering
关键词 粒子群优化算法 设计准则 配位数 菱形十二面体 密堆积 3D结构 Particle Swarm Optimization(PSO)algorithm design criteria coordination number rhombic dodecahedron close packing 3D structure
作者简介 马胜蓝(1986-),男,硕士,主研方向:智能计算,数据挖掘;E-mail:msl1121@vipqq.com 叶东毅,教授、博士生导师 杨玲玲,硕士。
  • 相关文献

参考文献18

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of IEEE International Conference on Neural Networks.[S.l.]:IEEE Press,1995:1942-1948.
  • 2Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[C]//Proceedings of IEEE International Conference of Evolutionary Computation.[S.l.]:IEEE Press,1998:69-73.
  • 3马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132-140. 被引量:5
  • 4马胜蓝,叶东毅.一种基于博弈策略的群智能属性约简算法[J].计算机工程与应用,2012,48(1):145-149. 被引量:5
  • 5Mendes R,Kennedy J.The Fully Informed Particle Swarm:Simpler,Maybe Better[J].IEEE Transactions on Evolutionary Computation,2004,8(3):204-210.
  • 6Kennedy J.Small Worlds and Mega-minds:Effects of Neighborhood Topology on Particle Swarm Performance[C]//Proceedings of Congress on Evolutionary Computation.Washington D.C.,USA:IEEE Computer Society,1999:1931-1938.
  • 7马胜蓝,叶东毅.信息熵最小约简问题的若干随机优化算法[J].模式识别与人工智能,2012,25(1):96-104. 被引量:10
  • 8De A K.A Text Book of Inorganic Chemistry[M].[S.l.]:New Age International Publishers,2003.
  • 9Hermann A,Matthias L,Peter S.The Search for the Species with the Highest Coordination Number[J].Angewandte Chemie International Edition,2007,46(14):2444-2447.
  • 10Mc Naught A,Wilkinson A.Compendium of Chemical Terminology[M].[S.l.]:Wiley-Blackwell,1997.

二级参考文献56

  • 1叶东毅,廖建坤.基于二进制粒子群优化的一个最小属性约简算法[J].模式识别与人工智能,2007,20(3):295-300. 被引量:20
  • 2SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition [ J ]. Pattern Recognition Letters, 2003, 24: 833-849.
  • 3CHOUCHOULAS A, SHEN Q. Rough set-aided keyword reduction for text categorization [ J ]. Applied Artificial Intelligence, 2001 , 15 (9) : 843-873.
  • 4SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems [ C ]//Dordrech : Kluwer Academic Publishers, 1992 : 311-362.
  • 5HU X. Knowledge discovery in databases: an attribute-oriented rough set approach[ D]. Regina, Saskatchewan: Canada, Computer Science Faculty of Graduate Studies, University of Regina, 1995 : 1-152.
  • 6WROBLEWSKI, J. Finding minimal reducts using genetic algorithms[ C]//Proc of the Second Annual Joint Conference on Information Sciences. Wrightsville Beach, USA, 1995 : 186-189.
  • 7JENSEN R, SHEN Q. Finding rough set reducts with ant colony optimization [ C ]//Proceedings of the 2003 UK Workshop on Computational Intelligence. Bristol, UK, 2003 : 15-22.
  • 8HEDAR A R, WANG J, FUKUSHIMA M. Tabu search for attribute reduction in rough set theory[J]. Soft Computing, 2008, 12(9) : 909-918.
  • 9GLOVER F. Tabu search-part I, ORSA [J]. Journal on Computing 1989, 1 (3) : 190-206.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization [C]//Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948.

共引文献14

同被引文献13

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部