期刊文献+

广义Delta算子系统的H_∞性能分析及控制 被引量:5

H_∞ Performance Analysis and Control of Singular Delta Operator Systems
在线阅读 下载PDF
导出
摘要 针对广义Delta算子系统的H∞性能分析及H∞控制问题,本文采用Delta算子方法,利用线性矩阵不等式,对广义Delta算子系统进行H∞性能分析。通过分析得到使广义Delta算子系统容许且具有H∞性能的充分必要条件。在此基础上,进一步考虑了广义Delta算子系统的H∞控制问题,对于不是容许且具有指定H∞性能的广义Delta算子系统,基于线性矩阵不等式,给出了广义Delta算子系统状态反馈H∞控制器的存在条件和设计方法,并利用MATLAB-LMI工具箱,对给出的数值算例进行计算和分析。结果表明,所得闭环广义离散系统容许且满足H∞性能,证明了本文所给出的判别方法的有效性。Delta算子方法在广义离散系统的性能研究中可以良好应用。 Aiming at the problems of H∞ performance analysis and H∞ control of singular delta operator systems,this paper applies the method of Delta operator and linear matrix inequality to analyze H∞ performance for the linear singular Delta operator system.In the analysis,a necessary and sufficient condition is given,such that a singular delta operator system is admissible and satisfies a prescribed H∞ performance.Then based on the above results,we further considered the problem of H∞ control for the linear singular Delta operator system.And for these singular Delta operator systems without admissibility and satisfying H∞ performance,the existence condition and design method of a suitable state feedback H∞ controller are obtained for singular delta operator systems based on linear matrix inequality.Finally,we take some numerical systems for examples.After calculating and analyzing by using MATLAB-LMI tools,these results show that the closed-loop system we get is admissible and satisfying prescribed H∞ performance.It suggests that these proposed results are effective.Also,the Delta operator method can be well used in the research of many properties of singular discrete systems.
出处 《青岛大学学报(工程技术版)》 CAS 2014年第4期13-17,22,共6页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金项目资助(61104001)
关键词 广义系统 DELTA算子 H∞控制 线性矩阵不等式 singular systems delta operator H∞ control linear matrix inequality (LMI)
作者简介 刘琳(1988-),女,硕士研究生,主要研究方向为广义Delta算子系统的控制.通讯作者:董心壮(1973-),女,博士,副教授,主要研究方向为广义系统控制理论.Email:xzdong@hotmail.com
  • 相关文献

参考文献10

  • 1王惠姣,薛安克,鲁仁全,徐哲,王建中.参数不确定离散奇异系统的鲁棒H_∞控制[J].自动化学报,2007,33(12):1300-1305. 被引量:9
  • 2Chadli M, Darouach M. Novel Bounded Real Lemma for Discrete-Time Descriptor Systems: Application to H Control Design[J]. Automatica, 2012, 48(2): 449-453.
  • 3Masubuchi I, Kamitane Y, Ohara A, et al. H Control for Descriptor Systems: a Matrix Inequalities Approach[J]. Au- tomatica, 1997, 33(4) 669 - 673.
  • 4Dong Xin-zhuang. Admissibility Analysis of Linear Singular Systems Via a Delta Operator Method[J']. International Journal of Systems Science, 2014, 45(11), 2366 -2375.
  • 5毛青堂,董心壮,田万虎.广义Delta算子系统的容许性条件:分析与综合[C]//Proceedings of the lOth World Con-gress on Intelligent Control and Automation. Beijing, China: IEEE, 2012:1870 - 1875.
  • 6毛青堂,董心壮,田万虎.广义Delta算子系统的状态反馈容许控制[J].青岛大学学报(工程技术版),2013,28(1):14-18. 被引量:9
  • 7Dong Xin-zhuang, Tian Wan-hu, Mao Qing-tang, et al. Robust Admissibility Analysis and Synthesis of Uncertain Singu- lar Systems Via Delta Operator Approach[C]//10 th IEEE International Conference on Control and Automation. Hang- zhou, China: IEEE, 2013: 1059- 1064.
  • 8Dong Xin-zhuang. Controllability Analysis of Linear Singular Delta Operator Systems[C]ff 12th International Conference on Control Automation Robotics and Vision. Guangzhou, China: ICARCV, 2012. 1199 - 1204.
  • 9Dong Xin-zhuang, Mao Qing-tang, Tian Wan-hu, et al. Observability Analysis of Linear Sihgular Delta Operator Sys- tems[C] ff 10th IEEE International Conference on Control and Automation. Hangzhou, China: IEEE, 2013 : 10 - 15.
  • 10田万虎,董心壮,毛青堂.广义Delta算子系统的无源性分析[J].青岛大学学报(工程技术版),2012,27(4):6-10. 被引量:5

二级参考文献35

  • 1李惠光,武波,李国有,等.Delta算子控制及其鲁棒控制理论基础[M].北京:国防工业出版社,2005.
  • 2Dai L. Singular Control Systems. New York: Springer- Verlag, 1989
  • 3Lewis F L. A survey of linear singular systems. Circuits, System, Signal Processing, 1986, 5(1): 3-36
  • 4Fridman E, Shaked U. A descriptor system approach to H∞ control of linear time-delay systems. IEEE Transactions on Automatic Control, 2002, 47(2): 253-270
  • 5Xu S, Lam J, Yang C. Robust H∞ control for uncertain singular systems with state delay. Internationed Journal of Robust and Nonlinear Control, 2003, 13(13): 1213-1223
  • 6Kim J H, Lee J H, Park H B. Robust H∞ control of singular systems with time delays and uncertainties via LMI approach. In: Proceedings of American Control Conference. Anchorage, AK: 2002. 620-621
  • 7Xue A K, Shi T, Lu R Q. Robust H∞ optimal guaranteed cost control for a class of nonlinear uncertain singular delay systems. In: Proceedings of International Conference on Industrial Electronics. IEEE, 2006. 11-15
  • 8Lu R Q, Su H Y, Chu J. Robust H∞ control for a class of uncertain Lure's singular systems with time-delays. In: Proceedings of IEEE Conference on Decision and Control. Hawaii, USA: IEEE, 2003. 5585-5590
  • 9Zhang G M, Jia Y M. New results on discrete-time bounded real lemma for singular systems: strict linear inequality conditions. In: Proceedings of American Control Conference. Anchorage, AK: 2002. 634-638
  • 10Xu S, Yang C. H∞ state feedback control for discrete singular systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1405-1409

共引文献18

同被引文献32

  • 1舒伟仁,张庆灵.不确定时滞广义系统的鲁棒非脆弱H_∞控制[J].控制与决策,2005,20(6):629-633. 被引量:19
  • 2李惠光,武波,李国有,等.Delta算子控制及其鲁棒控制理论基础[M].北京:国防工业出版社,2005.
  • 3段广仁.广义线性系统分析与设计[M].北京:科学出版社,2012,238-254.
  • 4Goodwin G C, Leal R L, Mayne D Q, et al. Rapprochement Between Continuous and Discrete Model Reference Control [J].Automatica, 1986, 22(2): 199-207.
  • 5Dong Xinzhuang. Admissibility Analysis of Linear Singular Systems Via a Delta Operator Method [J]. International Journal of Systems Science, 2014, 45(11) : 2366 - 2375.
  • 6Dong Xinzhuang. LMI-Based Ial: Control for Linear Singular Discrete Systems: a Novel Method[J].lET Control Theo- ry and Application, 2013, 7(16): 2028-2036.
  • 7Xu Shengyuan, Lam James. Robust Control and Filtering of Singular System [M]. Berlin: Springer, 2006.
  • 8Xu Shengyuan, James L. Robust Control and Filtering of Singular Systems[M]. Berlin: Springer Berlin Heidelberg, 2006.
  • 9Dong Xin-zhuang. LMI Based H∞ Control for Linear Singular Discrete Systems: A Novel Method [J]. let Control Theo- ry & Applications, 2013, 7(16): 2028-2036.
  • 10Keel L H, Bhattacharyya S P. Robust, Fragile, or Optimal[J]. IEEE Transactions on Automatic Control, 1997, 42(8) : 1098- 1105.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部