期刊文献+

基于谱残差显著区域检测的图像分辨率归一化方法 被引量:1

Normalizing Image Resolution in Saliency Detection Based On Spectral Residual
在线阅读 下载PDF
导出
摘要 根据人类视觉系统的特点,提出一种自适应归一化图像分辨率的预处理方法。该方法通过计算图像灰度分布情况,根据图像所包含显著区域大小的不同,自适应的确定图像分辨率,打破了谱残差算法无论什么图像均将其归一化为固定分辨率大小(64×64)的局限;同时该算法还能够根据图像中所包含目标的不同大小,完整地提取出所有显著性目标,有效克服了谱残差算法倾向于小目标检测的缺点。实验结果表明:相对于谱残差算法,新算法简单,耗时少于0.1 s,检测准确率提高约15%,可以得到显著区域更为全面的检测效果。 According to the characteristics of human visual system, an adaptive normalizing method for preprocess-ing the image resolution is proposed.We analyze the size of the saliency region by calculating the gray distribution of the input image;then we define the image resolution adaptively.This method can help to do away with the limita-tion of normalizing all images into a fixed resolution (64×64) and to avoid the usually committed error of underesti-mating the total size of all effectively saliency regions when using the spectral residual method .The experimental re-sults on natural images and their analysis show preliminarily that this approach can:(1) improve the detection ac-curacy by consuming the time of less than 0.1 second,thus improving hit rate by 15%;( 2) estimate correctly the total size of all saliency regions.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第6期872-876,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61101191) 航空基金(20130153003) 西北工业大学基础研究基金(JC20120216) 上海航天科技创新基金(SAST201342) 西北工业大学本科毕业设计重点扶持项目资助
关键词 视觉注意 谱残差 自适应归一化 分辨率预处理 image resolution calculations discrete Fourier transforms efficiency experiments invariance matrix algebra program processors statistics adaptive normalization resolution-preprocessing spectral residual visual attention
作者简介 余瑞星(1978-),女,西北工业大学副教授,主要从事图像处理、目标识别与成像制导技术研究。
  • 相关文献

参考文献8

二级参考文献37

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2葛涛,冯松鹤.基于层次和动态阈值的图像显著区域检测方法[J].计算机应用,2006,26(11):2721-2723. 被引量:7
  • 3ITTI L,KOUCH C.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2(3):194-230.
  • 4ITTI L,KOUCH C.Feature combination strategies for saliency-based visual attention systems[J].Journal of Electronic Imaging,2001,10(1):161-169.
  • 5HOU Xiaodi,ZHANG Liqing.Saliency detection:a spectral residual approach[C]// IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:IEEE,2007:1-8.
  • 6MA Yufei,ZHANG Hongjiang.Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the 11th ACM International Conference on Multimedia.New York:ACM,2003:374-381.
  • 7SUN Yaoru,ROBERT F.Object-based visual attention for computer vision[J].Artificial Intelligence,2003,146(1):77-123.
  • 8WOONG J W,SANG W B,MINHO L.Real time implementation of a selective attention model for the intelligent robot with autonomous mental development[C]//Proceedings of the IEEE Symposium on Industrial Electronics.Minneapolis,USA:2005:1309-1314.
  • 9WOONG J W,SANG W B,JAEKYOUNG M.Biologically motivated face selective attention system[C]// International Joint Conference on Neural Networks.Minneapolis,USA,2006:4292-4297.
  • 10HU Yiqun,XIE Xing,MA Weiying.Salient region detection using weighted feature maps based on the human visual attention model[C]// Advances in Multimedia Information Processing.Heidelberg:Springer,2004:993-1000.

共引文献38

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部