期刊文献+

基于改进人工免疫算法的柔性车间调度问题 被引量:4

Flexible Job-Shop Scheduling Problem Based on Improved Artificial Immune Algorithm
在线阅读 下载PDF
导出
摘要 针对以最小化总处理时间为目标的柔性车间调度问题,为优化工件设备加工路径,提出了求解强NP-Hard问题的改进人工免疫算法。在初始解产生方面应用了多种求解策略的组合,多个变异算子应用于工序分配和工序排序以产生新的抗体,能够有效保持种群的多样性。并通过引入重排序变异算子及克隆算子提高了算法的局部求解能力,使算法在局部求精与空间探索方面都取得了较好的成绩。通过在Bench Mark问题上的测试,并与相关文献仿真结果比较,表明了改进算法具有较好的稳定性和收敛性。 For the flexible job - hop scheduling problem targeting the total processing time minimization, an im- proved artificial immune algorithm is designed to solve the strong NP - Hard problem. The combination of multi - sol- ving strategies is applied in the initial solution; multiple mutation operator allocation processes and procedures are used in order to generate new antibodies, can effectively maintain the diversity of population. The improved artificial immune algorithm improves the local search ability by introducing the reordering mutation operator and clone operator. By using those operators, the proposed algorithm obtained better result in local refinement and space exploration. The algorithm is tested in the BenchMark problem, and comparison with several existing algorithms, to verify the effec- tiveness of the algorithm.
作者 马佳 石刚
出处 《计算机仿真》 CSCD 北大核心 2014年第12期375-379,共5页 Computer Simulation
基金 国家自然科学基金(61203368)
关键词 人工免疫算法 变异算子 克隆 柔性车间调度问题 Artificial immune algorithm (AIA) Mutation operator Clone operator Flexible job - hop scheduling problem (FJSP)
作者简介 马佳(1979-),女(汉族),辽宁盖州市人,博士,讲师,研究方向:智能控制、生产计划与调度、供应链管理的研究。 石刚(1978-),男(汉族),山东阳谷县人,博士,研究员,研究方向:人工智能、系统优化、模式识别等研究。
  • 相关文献

参考文献16

  • 1V Roshanaei, B Naderi, F Jolai, M Khalili. A variable neighbor- hood searchfor job shop scheduling with set - up times to minimize makespan [ J ]. Future Generation Computer Systems, 2009, 1 (25) :654 - 661.
  • 2P Brandimarte. Routing and scheduling in a flexible job shop by taboo search [ J ]. Annals of Operations Research, 1993,1 (41) : 157 - 183.
  • 3I Kacem, S Hammadi, P Borne. Approach by localization and multi objectiveevolutionary optimization for flexible job - shop scheduling problems [ C ]. IEEETransactions on Systems, Man, and Cybernet- ics ,2002,32 ( 1 ) : 1 - 13.
  • 4W Xia,Z Wu. An effective hybrid optimization approach for multi -objectiveflexible job-shop scheduling problem[J]. Computers and Industrial Engineering, 2005,12 (48) :409 - 425.
  • 5H. Chen,J. Ihlow,C. Lehmann,A genetic algorithm for flexible Job -shop scheduling [ C ], IEEE International Conference on Ro- botics and Automation, Detroit, 1999,1120 - 1125.
  • 6H Zhang, M Gen. Multistage - based genetic algorithm for flexible job -shop scheduling problem[J]. Journal of Complexity Interna- tional,2005,2( 11 ) :223 -232.
  • 7Z X Ong,J C Tay,C K Kwoh. Applying the Clonal Selection Prin- ciple to FindFlexible Job -Shop Schedules[C]. LNCS,2005 -1 : 442 - 455.
  • 8F Pezzella, G Morganti, G Ciaschetti. A genetic algorithm for the flexible job - shop scheduling problem[ J]. Computers and Opera- tions Research ,2008,35 (10) : 3202 - 3212.
  • 9J Gao, L Sun, M Gen. A hybrid genetic and variable neighborhood descent for flexible job shop scheduling problems [ J ] , Computers and Operations Research,2008,35 (9) : 2892 - 2907.
  • 10P Fattabi, M Saidi Mehrabad, F Jolai. Mathematical modeling and heuristieapproaehes to flexible job shop scheduling problems[ J ]. Journal of Intelligent Manufacturing,2007,18 ( 3 ) : 331 - 342.

二级参考文献99

共引文献87

同被引文献40

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部