期刊文献+

关于容度下Borel-Cantelli引理的一点注记(英文) 被引量:1

A Note on the Borel-Cantelli Lemma for Capacity
在线阅读 下载PDF
导出
摘要 这个注记中我们证明了在没有两两独立假设条件下对容度的Borel-Cantelli引理,获得了容度对并事件的最优下界.这些结果推广了经典的Borel-Cantelli引理. In this note, we prove the Borel-Cantelli lemma for capacity without pairwise independent assumption. The best lower bound about union for capacity is obtained. Classical Borel-Cantelli lemma is extended to the case of capacity.
出处 《应用概率统计》 CSCD 北大核心 2014年第5期469-475,共7页 Chinese Journal of Applied Probability and Statistics
基金 supported by National Science Foundation of China(11301160) Natural Science Foundation of Yunnan Province(2013FZ116,2011C120) Reserve Talents Foundations of Honghe University(2014HB0204,ZYDT1308,ZDKC1111) Doctor Foundation of Honghe University(14bs18) Academic Backbone Training for Chuxiong Normal School(13XJGG01)
关键词 容度 Borel—Cantelli引理 次线性期望 两两独立. Capacity, Borel-Cantelli lemma, sublinear expectation, pairwise independence.
  • 相关文献

参考文献11

  • 1Chung, K.L. and ErdSs, P., On the application of the Borel-Cantelli lemma, Transactions of the American Mathematical Society, 72(1)(1952): 179-186.
  • 2ErdSs, P. and Rnyi, A., On Cantor's series with convergent 1/q,, Annales Universitatis Scien- tiam Budapestinensis de Rolando Eb'tvSs Nominatae: Sectio Mathematiea, 2(1959): 93-109.
  • 3Kochen, S. and Stone, C., A note on the Borel-Cantelli lemma, Illinois Journal of Mathematics, 8(2)(1964): 248-251.
  • 4Bruss, F.T., A counterpart of the Borel-Cantelli lemma, Journal of Applied Probability, 17(4)(1980): 1094 1101.
  • 5Petrov, V.V., A note on the Borel-Cantelli lemma, Statistics Probability Letters, 58(3)(2002): 283-286.
  • 6Chen, Z., Wu, P. and Li, B., A strong law of large numbers for nonwadditive probabilities, International Journal of Approximate Reasoning, 54(3) (2013): 365-377.
  • 7Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of ItS's type, in: Benth, et al. (Editors): Proceedings of the 2005 Abel Symposium 2, Springer-Verlag, 2006, 541-567.
  • 8Peng, S., Nonlinear expectations and stochastic calculus under uncertainty - with robust central limit theorem and G-Brownian motion, arXiv:math.PR/1002.4546vl, 2010.
  • 9Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation application to G-Brownian motion paths, Potential Analysis, 34(2)(2011): 139-161.
  • 10Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion Acta Mathematicae Applicatae Sinica, English Series, 25(3)(2009): 539-546.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部