期刊文献+

基于贝叶斯网络的高铁信号系统车载设备故障诊断方法的研究 被引量:19

Bayesian Network Based Fault Diagnosis System for Vehicle on-board Equipment of High-speed Railway
在线阅读 下载PDF
导出
摘要 考虑到高铁车载设备故障诊断的不确定性和复杂性,本文提出了基于贝叶斯网络的车载设备故障诊断系统。在建立贝叶斯网络结构的过程中,基于充分利用现场数据与先验知识的思想,本文通过融合不同方法(K2算法,MCMC算法和专家知识)得到最优的贝叶斯网络结构。最后,本文进行了实例分析与模型验证,并与KNN算法、BP神经网络算法进行比较,测试结果表明该模型的正确性和有效性。文中的验证数据来自武广高铁车载设备故障追踪表。 Due to the uncertainty and complexity of fault diagnosis of vehicle on-board equipment (VOBE)of high speed railways,the Bayesian network (BN)based fault diagnosis system for VOBE was put forward.In Establishing the BN structure for VOBE,by fully utilizing site data and a priori knewlege,different methods (Algorithm K2,Algorithm MCMC and expert knowledge)were compromised to set up the optimum BN struc-ture.Case study and model verifyication were carried out.Comparison with Algorithm KNN and Algorithm ANN-BP shows that the proposed BN model is correct and effective.The field data are from the fault detection and diagnosis table of VOBE of the Wuhan-Guangzhou High-speed Railway.
出处 《铁道学报》 EI CAS CSCD 北大核心 2014年第11期48-53,共6页 Journal of the China Railway Society
基金 中国铁路总公司重点项目(2013X015-B) 轨道交通控制与安全国家重点实验室自主研究课题(RCS2012ZT005)
关键词 贝叶斯网络 故障诊断 高速铁路 车载设备 Bayesian networks fault diagnosis high-speed railway vehicle on-board equipment
作者简介 赵阳(1990-),男,山西运城人,硕士研究生。E-mail:12120304@bjtu.edu.cn 通讯作者:徐田华(1971-),男,山东临沂人,副教授,博士。E-mailthxu@bjtu.edu.cn
  • 相关文献

参考文献12

  • 1黄赞武,魏学业,刘泽.基于模糊神经网络的轨道电路故障诊断方法研究[J].铁道学报,2012,34(11):54-59. 被引量:50
  • 2PANDYA D H,UPADHYAY S H. Fault Diagnosis ofRolling Element Bearing with Intrinsic Mode Function ofAcoustic Emission Data Using APF-KNN[J]. Expert Sys-tems with Applications, 2013,40( 10) ; 4137-4145.
  • 3张喜,杜旭升,刘朝英.车站信号控制设备故障诊断专家系统的研究与实现[J].铁道学报,2009,31(3):43-49. 被引量:41
  • 4VENKAT V,RAGHUNATHAN R. A Review of ProcessFault Detection and Diagnosis Part I; Quantitative Model-based Methods [ J ]. Computers Chemical Engineering,2003’ 27(3): 293-311.
  • 5VENKAT V,RAGHUNATHAN R. A Review of ProcessFault Detection and Diagnosis, Part II: Qualitative Modelsand Search Strategies[J], Computers Chemical Engineer-ing, 2003, 27(3):313-326.
  • 6VENKAT V, RAGHUNATHAN R. A Review of ProcessFault Detection and Diagnosis,Part III: Process HistoryBased Methods [ J ]. Computers Chemical Engineering,2003, 27(3):327-346.
  • 7ALBERTO L,RIASCOS M, MARCELO G. A BayesianNetwork Fault Diagnostic System for Proton ExchangeMembrane Fuel Cells[J]. Journal of Power Sources, 2007,165(1): 267-278.
  • 8YANG L, LEE J. Bayesian Belief Network-based Ap-proach for Diagnostics and Prognostics of SemiconductorManufacturing Systems[J]. Robotics and Computer-Inte-grated Manufacturing,2012,28(1) : 66-74.
  • 9MURALIDHARANA V,SUGUMARAN V, A Compara-tive Study of Naive Bayes Classifier and Bayes Net Classifi-er for Fault Diagnosis of Monoblock Centrifugal Pump U-sing Wavelet Analysis[J], Applied Soft Computing, 2012,12(8): 2023-2029.
  • 10KEVIN M. Bayes Net Toolbox for Matlab[ EB/OL]. ht-tp;// www. cs. ubc. ca/?murphyk/Software/BNT/us-age. html甘 file. (2007,accessed 10 February 2013).

二级参考文献11

共引文献79

同被引文献206

引证文献19

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部