期刊文献+

一种融合地图与传感器信息的室内地图匹配新算法 被引量:5

A New Indoor Map Matching Algorithm Fusing Map and Sensor Information
在线阅读 下载PDF
导出
摘要 基于粒子滤波技术,提出了融合地图信息与传感器信息的室内地图匹配算法,对于在室内定位中由状态空间模型描述的非线性系统,通过非参数化的蒙特卡洛(Monte Carlo)模拟方法来实现递推贝叶斯滤波,将室内地理信息数据、传感器信息、无线定位信息融入到粒子的权重值中,对观测值进行不断修正。实验证明,所提出的基于粒子滤波的地图匹配技术有效解决了由于无线定位结果穿墙、错定至隔壁房间而造成的用户体验差等问题,同时对室内定位结果进行了修正,提高了室内定位精度。 This paper proposes a new map matching algorithm based on particle filter,which fuses map andsensor information. Firstly,the nonlinear indoor positioning system is described by state space model. Then,the recursive Bayesian filtering is implemented through the parameterized Monte Carlo method,and the in-door geographic data,sensors,wireless positioning information are fused to modify the weights of the parti-cles and the observed value. The experiment shows that the proposed map matching technology can effec-tively solve the user experience problems caused by wrong positioning result. Also,this algorithm improvesthe indoor positioning accuracy.
作者 余彦培
出处 《电讯技术》 北大核心 2014年第12期1656-1662,共7页 Telecommunication Engineering
基金 中国博士后科学基金资助项目(2014M550818)~~
关键词 位置服务 室内定位 地图匹配 传感器信息 粒子滤波 数据融合 location based service indoor positioning map matching sensors information particle filter data fusion
作者简介 余彦培(1986-),男,重庆人,2013年获博士学位,现从事博士后工作,主要研究方向为室内定位与地图.
  • 相关文献

参考文献10

二级参考文献45

  • 1叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 2陈毓芬.心象地图及其在地图设计中的作用.解放军测绘学院学报,1995,12(4):290-293.
  • 3Hue C, Cadre L. Sequential Monte Carlo methods for multiple target tracking and data fusion[J]. IEEE Transactions on Sig- nal Processing,2002,50(2) :309 - 325.
  • 4Arulampalam S, Maskell S, Gordon N, et al. A tutorial on par- ticle filters for on- line non - linear/non - Gaussian Bayesian tracking[ J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 174 - 188.
  • 5Foxlin E. Pedestrian tracking with shoe-mounted inertial sensors[J]. IEEE Computer Graphics and Applications, 2005, 25 (6): 38-46.
  • 6Abdulrahim K, Hide C, Moore T, et al. Aiding MEMS IMU with building heading for indoor pedestrian navigation[C]// Ubiquitous Positioning Indoor and Location Based Service (UPINLBS 2010). Krikkonummi, Finland, October 14-15, 2010.
  • 7Jimenez A R, Seco F, Prieto J C, et al. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU[C]// The 7th Workshop on Positioning, Navigation and Communication(WPNC 2010). Dresden, Germany, March 11-12, 2010.
  • 8Simon D. Optimal state estimation[M]. New Jersey: John Wiley & Sons, Inc., 2006.
  • 9Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.
  • 10Krach B, Robertson P. Integration of foot-mounted inertial sensors into a Bayesian location estimation framework[C]// The 5th Workshop on Positioning, Navigation and Communication (WPNC 2008). Hannover, Germany, March 27, 2008.

共引文献128

同被引文献28

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部