期刊文献+

基于矩阵分解的荧光显微序列线粒体检测

A detection algorithm based on matrix factorization for live mitochondria in fluorescent microscopic images
在线阅读 下载PDF
导出
摘要 利用图像处理技术,检测荧光显微序列中的活性线粒体是生物医学领域重要的研究手段之一.受到荧光显微镜成像技术的限制,序列中每帧图像均包含细胞质阴影和荧光标记的线粒体,具有很低的信噪比,难以满足一般粒子检测算法的要求.为了精确检测活细胞中的线粒体,提出一种基于矩阵分解的荧光显微序列线粒体检测算法,并利用增广拉格朗日乘子法,快速准确地实现该算法,将线粒体从细胞质阴影中有效分离出来,实现线粒体的精确检测.实验结果表明,此方法为活细胞中线粒体的精确检测提供了快速、高效的分析工具. Detection of mitochondria in fluorescent microscopic images is one of the most important methods in studies concerning apoptosis and the nature of life phenomena in the area of biomedical image processing. Limited by fluorescence microscopy, fluorescent microscopic images contain two parts which are the shadow of cytoplasm and live mitochondria, and the signal-to-noise ratio (SNR) of live mitochondria time sequence images is low, which cannot meet the requirements of general particle algorithm. A new detection algorithm was proposed for live mitochondria in fluorescent microscopic images. To realize this method rapidly, augmented Lagrange multiplier algorithm was used. Mitochondria was be separated from the cytoplasm and accurately detected in fluorescent microscopic images. Therefore, the proposed algorithm provides an efficient and accurate tool to detect mitochondria in live cell.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第10期839-843,共5页 JUSTC
基金 国家自然科学基金(61271231 61300157 61201425) 江苏省自然科学基金(BK2011337)资助
关键词 线粒体 矩阵分解 优化问题 增广拉格朗日乘子法 mitochondria matrix factorization optimization problem augmented Lagrange multiplier algorithm
作者简介 贾晓萌,女,1988年生,硕士生.研究方向:图像处理.Email:jxm88922@163.com 通讯作者:都思丹,博士/教授.E-mail:coff128@nju.edu.cn.
  • 相关文献

参考文献9

  • 1Conradt B. Cell biology.. Mitochondria shape up[J]. Nature, 2006, 443(7112): 646-647.
  • 2徐俊梅,李杨,都思丹,赵康僆.荧光显微图像序列中活性线粒体的跟踪算法[J].生物医学工程学杂志,2012,29(2):352-358. 被引量:1
  • 3Olivo-Marin J C. Extraction of spots in biological images using multi-scale products [ J ]. Pattern Recognition, 2002, 35(9): 1 989-1 996.
  • 4Jiang S, Zhou X B, Kirchhausen T, et aI. Detection of molecular particles in live cells via machine learning [J]. Cytometry A, 2007, 71(8): 563-575.
  • 5Baraniuk R. Compressive sensing [ J ]. IEEE signal processing magazine, 2007, 24(4) : 118-121.
  • 6Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52 (4): 1 289-1 306.
  • 7Pilling A D, Horiuchi D, Lively C M, et al. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons[J]. Molecular Biology of the Cell, 2006, 17(4): 2 057-2 068.
  • 8Cands E J, Li X D, Ma Y, et al. Robust principal component analysis? [J]. Journal of the ACM, 2011, 58(3) : 1-39.
  • 9Lin Z C, Chen M M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low- rank matrices [EB/OL]. http://www, researchgate. net/p ub l icat ion/46587364The_ Augment ed_ Lag range_ MultiplierMethod for Exact_Recovery_of_Corrupted Low-Rank Matrices.

二级参考文献12

  • 1VAN ROESSEL P,BRAND A H.Imaging into the future:visualizing gene expression and protein interactions with fluo-rescent proteins[J].Nat Cell Biol,2002,4(1):E15-E20.
  • 2MEGASON S G,FRASER S E.Digitizing life at the level ofthe cell:high-performance laser-scanning microscopy and im-age analysis for in toto imaging of development[J].MechDev,2003,120(11):1407-1420.
  • 3PILLING A D,HORIUCHI D,LIVELY C M,et al.Kine-sin-1and dynein are the primary motors for fast transport ofmitochondria in drosophila motor axons[J].Mol Biol Cell,2006,17(4):2057-2068.
  • 4SHI J,IRWIN M H,PINKERT C A.Mitochondria transferinto fibroblasts:liposome-mediated transfer of labeled mito-chondria into cultured cells[J].Ethnicityamp&Disease Jour-nal,2008,18(2):S1-43-S1-44.
  • 5CHEEZUM M K,WALKER W F,GUILFORD W H.Quantitative comparison of algorithms for tracking single fluo-rescent particles[J].Biophys J,2001,81(4):2378-2388.
  • 6SAGE D,NEUMANN F R,HEDIGER F,et al.Automatictracking of individual fluorescence particles:application to thestudy of chromosome dynamics[J].IEEE Transactions onImage Processing,2005,14(9):1372-1383.
  • 7ZITOVB,FLUSSER J.Image registration methods:a sur-vey[J].Image Vis Comput,2003,21(11):977-1000.
  • 8SCHMID C,MOHR R.Local grayvalue invariants for imageretrieval[J].IEEE Trans Pattern Anal Mach Intell,1997,19(5):530-535.
  • 9HARTLEY R,ZISSERMAN A.Multiple view geometry incomputer vision[M].2nd ed.Cambridge:Cambridge Univer-sity Press,2003:381-395.
  • 10SHAFIQUE K,SHAH M.A Non-iterative greedy algorithmfor multi-frame point correspondence[J].IEEE Transactionson Pattern Analysis and Machine Intelligence,2005,27(1):51-65.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部