期刊文献+

最小Q-特征值为给定整数的一类图 被引量:4

A Class of Graphs with a Given Integer as Least Q-eigenvalue
在线阅读 下载PDF
导出
摘要 研究了基于二部图H构造的一类图的最小无符号拉普拉斯特征值,即最小Q-特征值,得到了它的最小Q-特征值的可达上界为1.给出了最小Q-特征值为1的2个必要条件,并构造了最小Q-特征值为1的一类图.另外,给出了利用H∨K1的最小Q-特征值来判断简单图H没有完美匹配的方法,以及图G增加边后最小Q-特征值保持不变的1个充分条件.最后,构造了最小Q-特征值为任意给定的正整数t的一类图. When His a bipartite graph,the least signless Laplacian eigenvalue(the least Q-eigenvalue)of a class of graphs constructed by H was studied.It was shown that the sharp upper bound of the least Qeigenvalue of the class of graphs is 1.Moreover,two necessary conditions were given for the graphs whose least Q-eigenvalue is equal to 1,and a class of graphs was constructed which have eigenvalue 1 as their least Qeigenvalue.Also,a method was presented for checking agraph H without a perfect matching by using the least Q-eigenvalue of H∨K1,and a sufficient condition was given when adding edges without changing the least Qeigenvalue.At last,a class of graphs were constructed which have least Q-eigenvalue t,where t is a given positive integer.
出处 《上海理工大学学报》 CAS 北大核心 2014年第5期425-428,共4页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11301340 11201303 11101284) 上海市自然科学基金资助项目(12ZR1420300)
关键词 无符号拉普拉斯矩阵 最小Q-特征值 完美匹配 signless Laplacian matrix least Q-eigenvalue bound perfect matching
作者简介 沈富强(1988-),男,硕士研究生.研究方向:代数图论.E-mail:shenfuqiangl9881230@126.com 吴宝丰(1978-),男,讲师.研究方向:代数图论.E-mail:baufern@ussk.edu.cn
  • 相关文献

同被引文献42

  • 1Schwenk A J. Computing the characteristic polynomial of a graph[J]. Lecture Notes in Mathematics, 1974, 406 : 153 - 172.
  • 2Cardoso D M,de Freitas M A A, Martins E A, et al. Spectra of graphs obtained by a generalization of the join graph operation[J]. Discrete Mathematics, 2013, 313(5) :733- 741.
  • 3Wang J F,Belardob F. A note on the signless Laplacian eigenvalues of graphs [J]. Linear Algebra and Its Applications,2011,435(10) :2585 - 2590.
  • 4Cvetkovic D, Rowlinson P, Simic S. An introduction to the theory of graph spectra[M]. New York: Cambridge University Press, 2010.
  • 5Cardoso D M, Delorme C, Rama P. Laplacian eigen- vectors and eigenvalues and almost equitable partitions [J]. European Journal of Combinatorics, 2007,28 (3) :665 - 673.
  • 6Harary F, Schwenk A J. Which graphs have integral spectra? [J]. Lecture Notes in Mathematics, 1974, 406 :45 - 51.
  • 7Grone R,Merris R. The Laplacian spectrum of a graph II[J]. SIAM Journal on Discrete Mathematics, 1994,7 (2) :221 - 229.
  • 8Grone R, Merris R, Sunder V S. The Laplacian spectrum of a graph [J]. SIAM Journal on Matrix Analysis and Applications, 1990, 11 (2) :218 - 238.
  • 9Wenger R.Extremal graphs with no C4,C6 or C10\'s.[J].Journal of Combinational Theory Series B,1991,52(1):113-116.
  • 10Shao J Y,He C X,Shan H Y.The existence of even cycles with specific lengths in wenger\'s graph[J].Acta Mathematicae Applicatae Sinica,English Series,2008,24(2):281-288.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部