期刊文献+

反射激波作用下重气柱界面演化的PIV研究 被引量:8

Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method
在线阅读 下载PDF
导出
摘要 在水平激波管中采用PIV方法研究了反射激波作用下SF6重气柱界面的发展演化。采用射流方法形成SF6无膜气柱界面,并以乙二醇作为示踪粒子。利用连续激光片光源结合高速摄影相机对流场进行显示,得到了反射激波作用下SF6气柱界面的发展过程。结果表明,入射激波的冲击会在界面上产生反向旋转的涡环结构,而反射激波的作用会在界面上产生与初始涡环旋转方向相反的次级涡环结构。此外,对反射激波作用后的流场图像进行PIV后处理,获得了流场连续的速度场和涡量场。获得的环量与已有的理论模型进行比较,取得了较好的一致性,也验证了本文实验方法的可行性。 Evolution of a membrane-less heavy (SF6 )gas cylinder under reshock condition is experimentally investigated in a horizontal shock tube with particle image velocimetry (PIV ) method.As a fundamental interface configuration,gas cylinder evolution impinged by a single shock wave is extensively investigated while the related research under reshock condition is seldom performed.Illuminated by a continuous laser sheet,the interface morphology after the incident shock and reshock impact is characterized by glycol droplets and captured by a high-speed camera.The generation and development of counter-rotating vortex pair after incident shock impact is observed and secondary vortex rings,which have opposite rotating directions with the original vortex rings,are generated after the reshock passage because of the opposite pressure gra-dient induced by reshock compared with the incident shock.Because the velocity of the flow field after reshock is very small,the PIV measurement based on the Matpiv procedure is employed to capture the flow field after reshock.The continuous velocity and vorticity fields are obtained with the help of the continuous light source and high speed camera.Compared with the PIV algorithm based on the double-exposure technique,continuous velocity field can be obtained in a single test run based on the high-speed technique in this experiment.The circulation derived from PIV measurements is compared with the existed analytical model and a good agreement is achieved, which validates the feasibility of the experimental method.
出处 《实验流体力学》 CAS CSCD 北大核心 2014年第5期13-17,共5页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金(11272308 11302219) 中央高校基本科研业务费专项资金(WK2090050020) 中国博士后科学基金(BH2090050031)
关键词 重气柱 反射激波 连续激光片光 PIV 不稳定性 heavy gas cylinder reshock continuous laser sheet PIV instability
作者简介 张赋(1992-),男,江西九江人,硕士研究生。研究方向:实验流体力学。通信地址:安徽省合肥市中国科学技术大学近代力学系(230027)。E—mail:zfu@mail.ustc.edu.cn
  • 相关文献

参考文献21

  • 1Richtmyer R. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pure Appl Math, 1960, 13: 297-319.
  • 2Meshkov E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4: 101-104.
  • 3Andronov A, Bakhrakh M, Meshkov E, et al. Turbulent mixing at contact surface accelerated by shock waves[J]. Sov Phys JETP, 1976, 44 (2):424-427.
  • 4Latini M, Schilling O, Don W. Highresolution simulations and modeling of re-shocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions[J]. Phys Fluids, 2007, 19: 024104.
  • 5Hill D, Pantano C, Pullin D. Largeeddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with re-shock[J]. J Fluid Mech, 2006, 557: 29-61.
  • 6Si T, Zhai Z, Luo X,et al. Experimental investigation of reshocked spherical gas interfaces[J]. Phys Fluids, 2012, 24: 054101. .
  • 7Balakumar B, Orlicz G, Ristorcelli J, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics[J]. J Fluid Mech, 2012, 696: 67-93.
  • 8王显圣,司廷,罗喜胜,杨基明.反射激波冲击重气柱的RM不稳定性数值研究[J].力学学报,2012,44(4):664-672. 被引量:15
  • 9沙莎,陈志华,薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报,2013,62(14):291-300. 被引量:14
  • 10朱跃进,董刚,刘怡昕,范宝春.入射和反射激波诱导重气泡变形和失稳的三维数值研究[J].高压物理学报,2012,26(3):266-272. 被引量:3

二级参考文献76

  • 1柏劲松,李平,陈森华,廖海东,杨礼兵,姜洋.内爆加载下果冻内外界面不稳定性数值计算[J].高压物理学报,2004,18(4):295-301. 被引量:8
  • 2Kozlov V I. Simulation of SW/turbulence interactions. In: 10^th IWPCTM, Paris, France, July 17-21, 2006.
  • 3Cook A W, Cabot W, Miller P L. The mixing transition in Rayleigh-Taylor instability. J Fluid Mech, 2004, 51:333-362.
  • 4Livescu D, Ristorcelli J R. Buoyancy driven, variable density turbulence. J Fluid Mech, 2007, 91:43-71.
  • 5Juzaitis R. Code validation and stockpile stewardship. Los Alamos Res Q, 2002, 14:6-6.
  • 6Youngs D. Turbulent mixing, discovery. Sci Technol J AWE, 2003, 1 : 30-37.
  • 7Putanik P B, Oakley J G, Anderson M H, et al. Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave. Shock Waves, 2004, 13(6): 413-429.
  • 8Arnett D. The role of mixing in astrophysics. Astrophys J Suppl, 2000, 127(2): 213-217.
  • 9Piomelli U, William H, Moin P. Subgrid-scale backscatter in turbulent and transitional flows. Phys Fluids A, 1991, 3(7): 1766-1771.
  • 10Carati, Ghosal S, Moin P. On the representation of backscatter in dynamic localization models. Phys Fluids, 1995, 7(3): 606-616.

共引文献29

同被引文献36

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部