期刊文献+

特征值类频谱感知算法的仿真分析 被引量:6

Simulation and analysis of eigenvalue-based cooperative spectrum sensing algorithms
在线阅读 下载PDF
导出
摘要 为了全面了解基于特征值类的合作频谱感知算法的性能,通过Matlab仿真实验对该类算法进行仿真,以探究门限值随虚警概率的变化、采样次数和认知用户数对检测性能的影响,并分析针对不同信噪比的检测概率和实际的虚警概率。仿真结果显示,基于特征值类的算法不需预知主用户信号和噪声方差信息,能够克服噪声不确定度的影响,相较于传统的能量检测,有着更加稳健的检测性能;基于最小特征值极限分布的改进算法在低信噪比、采样次数和认知用户数较少时,判决门限更低、检测概率更高。 In order to comprehensively analyse the performance of eigenvalue-based cooperative spectrum sensing algorithms,the detailed simulation and analysis of this kind of algorithms are completed by simulation experiments with Matlab based on review.The threshold varies with probability of false alarm,the number of the sampling and the cognitive user (CU)varies with the performance of detection,as well as probability of detection and actual Pf as a function of the signal to noise ratio (SNR)are explored.Simulation results show that the eigenvalue-based algo-rithms do not need any knowledge of the primary user and noise variance in advance,that they are robust against noise variance uncertainty and that they have better performance than the con-ventional energy detection.Among them,the improved algorithms based on the limit distribution of the smallest eigenvalue have lower decision threshold and higher Pd than the existing algo-rithms with low SNR,fewer sampling and CU.
出处 《西安邮电大学学报》 2014年第5期27-33,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 国家科技重大专项基金资助项目(2012ZX03001025-004) 国家自然科学基金资助项目(61271276 61301091) 陕西省自然科学基金资助项目(2012JQ8011) 陕西省国际合作基金资助项目(2013KW01-03) 工业和信息化部通信软科学基金资助项目(2014R33)
关键词 认知无线电 频谱感知 随机矩阵理论 采样协方差矩阵 特征值 cognitive radio spectrum sensing random matrix theory sample covariance matrix eigenvalue
作者简介 弥寅(1986-),男,硕士,助教,从事认知无线电研究。E—mail:miyin0404@163.com 卢光跃(1971-),男,博士,教授,主要从事通信信号处理研究。E-mail:tonylugy@163.com
  • 相关文献

参考文献21

  • 1卢光跃,弥寅,包志强,冯景瑜.基于特征结构的频谱感知算法[J].西安邮电大学学报,2014,19(2):1-12. 被引量:23
  • 2Federal Communications Commission.Facilitating Opportunities for Flexible,Efficient,and Reliable Spectrum Use Employing Cognitive Radio Technologies[J].Et Docket,2003(03-108):05-57.
  • 3Haykin S,Thomson D J,Reed J H.Spectrum Sensing for Cognitive Radio[J].Proceedings of the IEEE,2009,97(5):849-877.
  • 4Yucek T,Arslan H.A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications[J].IEEE Communications Surveys and Tutorials,2009,11(1):116-130.
  • 5Cabric D,Mishra S M,Brodersen R W.Implementation Issues in Spectrum Sensing for Cognitive Radios[C] //Conference Record of the 38th Asilomar Conference on Signals,System,and Computers.CA Monterey:IEEE,2004:772-776.
  • 6Digham F F,Alouini M S,Simon M K.On the Energy Detection of Unknown Signals Over Fading Channels[J].IEEE Transactions on Communications,2007,55(1):21-24.
  • 7Tandra R,Sahai A.SNR Walls for Signal Detection[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(1):4-17.
  • 8Lunden J,Koivunen V,Huttunen A,et al.Collaborative Cyclostationary Spectrum Sensing for Cognitive Radio Systems[J].IEEE Transactions on Signal Processing,2009,57(11):4182-4195.
  • 9宋云飞,卢光跃.基于采样协方差矩阵的频谱感知算法仿真分析[J].西安邮电学院学报,2011,16(5):12-16. 被引量:6
  • 10Cardoso L S,Debbah M,Bianchi P,et al.Cooperative Spectrum Sensing Using Random Matrix Theory[C] //3rd International Symposium on Wireless Pervasive Computing.Luxembourg:IEEE,2008:334-338.

二级参考文献99

  • 1I. Mitola, J. and J. Maguire, G. Q. Cognitive radio: making softwareradios more personal [J]. IEEE Personal Commun. Mag., 1999, 6(4) : 13-18.
  • 2Tevfik Yucek, Huseyin Arslan. A Survey of Spectrum Algorithms for Cognitive Radio Applications [J]. IEEE Communications Surveys & Tutorials, 2009,11(1) : 116- 130.
  • 3Federioo Penna, Roberto Garello and Maurizio A. Spirito. Cooperative Spectrum Sensing based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices [ J ]. Communications Letters, IEEE, 2009,13(7) :507-509.
  • 4Cardoso L S, Debbah M, and Bianchi P. Cooperative spectrum sensing using random matrix theory [C]. ISWPC, Santorini, 2008,7(9): 334-338.
  • 5Zeng Yong-hong and Liang Ying-chang. Maximum minimum eigenvalue detection for cognitive radio [C]. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC' 07), Athens, 2007,3(7): 1-5.
  • 6Zeng Yh, Liang YC. Eigenvalue based Spectrum Sensing Algorithms for Cognitive Radio. http://adsabs. harvard. edu/abs/2008arXiv0804. 2960Z.
  • 7A. S,ahai and D. Cabric. Spectrum sensing: fundamental limits and ractical challenges. IEEE DySPAN 2005, [Online], http://www.eecs. berkeley. edu.
  • 8Mehta M L. Random Matrices [M]. Third edition, London: Academic Press, 2006: 394-438.
  • 9Tracy C A and Widom H. On orthogonal and symplectic matrix ensembles [J]. Communications in Mathematical Physics, 1996, 177(3): 727-754.
  • 10J. Baik, G. B. Arous, and S. Peehe. Phase transition of the largest eigenvalue for nonnull complex sample eovariante matrices[J]. 2005,33(5) : 1643-1697.

共引文献64

同被引文献60

  • 1盛骤,谢式千,潘承毅.概率论与数理统计[M].4版.北京:高等教育出版社,2008:44-45.
  • 2Zhi Quan,Cui Shuguang,Poor H V,et al. Collabora-tive Wideband Sensing for Cognitive Radios[J]. IEEESignal Processing Magazine, 2008,25(6):60-73.
  • 3Zhi Quan* Cui Shuguang, Sayed A H, et al. Wide-band spectrum sensing in cognitive radio networks[C]//Proceedings of the 2008 IEEE International Con-ference on Communications. Piscataway : IEEE Press,2008:901-906.
  • 4DIGHAM F F,ALOUINI M S,SIMONM K. On the energydetection of unknown signals over fading channels[J]. IEEETransactions on Communications,1967,5(1):3575-3579.
  • 5CABRIC D,TKACHENKO A,BRODERSENR W. Exper-imental study of spectrum sensing based on energy detec-tion and network cooperation [C] / / Proceedings of theACM 1st International Workshop on Technology and Poli-cy for Accessing Spectrum. New York:IEEE,2006:1-5.
  • 6CABRIC D,MISHRA S M,BRODERSEN R W. Imple-mentation issues in spectrum sensing for cognitive radios[C] / / Proceedings of the 38th Asilomar Conference onSignals Systems & Computers. Pacific Grove,California:IEEE,2004:772-776.
  • 7DANDAWTEH A V. Statistical tests for presence of cy-clostationarity[J]. IEEE Transactions on Signal Process-ing,1994,42(9):2355-2369.
  • 8ZENG Y,LIANG Y C. Maximum-minimum eigenvaluedetection for cognitive radio[C] / / Proceedings of 200718th International Symposium on Personal, Indoor andMobile Radio Communications. Athens,Grence:IEEE,2007:1-5.
  • 9WANG H,YANG E H,ZHAO Z,et al. Spectrum sensingin cognitive radio using goodness of fit testing[J]. IEEETransactions on Wireless Communications,2009,8(11):5427-5430.
  • 10JINM,GUO Q,XI J,et al. Spectrum sensing based on goodness of fit test with unilateral alternative hypothesis[J]. Electronics Letters,2014,50(22):1645-1646.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部