期刊文献+

基于模糊支配的高维多目标进化算法MFEA 被引量:16

A Many-Objective Evolutionary Algorithm Based on Fuzzy Dominance: MFEA
在线阅读 下载PDF
导出
摘要 为提高高维复杂多目标优化算法的收敛性和解集分布性,提出一种基于模糊支配的高维多目标进化算法MFEA.在第二代Pareto支配类高维多目标进化算法模型基础上,利用模糊理论对模型中的环境选择进行改进,提出基于模糊隶属度的支配关系,并结合Harmonic、k邻域法和小生境技术对其中的拥挤密度估计方法进行改进,最后根据高维多目标的特点并结合模糊理论α-截集的思想提出了新的环境选择策略.将该算法与目前性能最好的5种多目标进化算法在标准测试函数集上进行对比试验,结果表明本文算法与其他算法相比具有明显的优势,不仅提高了算法的收敛性能,而且保证了Pareto最优解的均匀分布性. In order to improve the convergence and distribution of Many-Objective Evolutionary Algorithms (MOEAs), this paper proposes a Many-Objective Fuzzy Evolutionary Algorithm (MFEA) which is based on fuzzy dominance. On the model of al- gorithms based on Pareto-dorninance, we improve the environmental selection using fuzzy logic. We present a new dominance strate- gy based on fuzzy membership. Then, we propose a new estimation method of crowding distance which incorporates Harmonic-dis- tance, k-neighborhood method and niche technique.Finally, according to the characteristics of MOPs and the idea of a-cut set, we design a new environmental selection strategy which is made up of two truncations. The proposed algorithm is compared to 5 state- of-the-art MOEAs on benchmark test problems. Simulation results show that α-MFEA has obvious advantages than other algorithms because MFEA could ensure good convergence while has uniform distribution, especially, applied to solving high-dimensional MOPs.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1653-1659,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61175126) 中央高校基本科研业务费专项资金(No.HEUCFZ1209) 高等学校博士学科点专项科研基金(No.20112304110009)
关键词 高维多目标优化 模糊隶属度 模糊支配 Harmonic平均距离 α-截集 many-objective optimization fuzzy membership fuzzy dominance Harmonic average distance
作者简介 毕晓君 女,1964年11月生于黑龙江省哈尔滨.哈尔滨工程大学信息与通信工程学院教授,博士生导师.主要研究方向为智能信息处理、图像处理.E-mail:hixiaojun@hrbeu.edu.cn 张永建(通信作者)男,1987年生于黑龙江省嫩江.哈尔滨工程大学信息与通信工程学院博士研究生,研究方向为信息智能处理技术、高维多目标优化.E-mail.:zhangyongjian1226@163.com
  • 相关文献

参考文献14

  • 1雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 2李密青,郑金华,李珂.一种非均匀分布问题分布性维护方法[J].电子学报,2011,39(4):946-952. 被引量:4
  • 3章萌,章卫国,孙勇.多目标强度Pareto混沌差分进化算法[J].控制与决策,2012,27(1):41-46. 被引量:19
  • 4ZhangQingfu,Li Hui.MOEA/D:A multi-objective evolutionary algorithm based on decomposition[J].IEEE Trans on Evolutionary Computation,2007,11 (6):712-731.
  • 5Ikeda K,Kita H,Kobayashi S.Failure of Pareto-based MOEAs:Does non-dominated really mean near to optimal[A].Proc of 2001 IEEE Congress on Evolutionary Computation[C].Seoul:IEEE Service Center,2001.957-962.
  • 6Deb K,Saxena D K.On finding Pareto-Optimal Solutions Tnrongh Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems[R].Kanpur:Indian Institute of Technology,2005.
  • 7Jaimes A L,Coello C A C,Chakraborty D.Objective reduction using a feature selection technique[A].Proc of the 10th Annual Conf on Genetic and Evolutionary Computation[C].New York:ACM,2008.673-680.
  • 8M.Farina,P.Amato.A fuzzy definition of "optimality" for many-criteria optimization problems[J].IEEE Transactions on Systems,Man,and Cybernetics,2004,34(3):315-326.
  • 9Hemandez-Diaz A,Santana-Quintero L,Coello-Coello C,et al.Pareto-adaptive ε-dominance[J].Evolutionary Computation,2007,15(4):493-517.
  • 10郭思涵,龚小胜.正交设计的E占优策略求解高维多目标优化问题研究[J].计算机科学,2012,39(2):276-279. 被引量:9

二级参考文献81

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:210
  • 2曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 3雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5李广文.进化算法及其在飞行控制系统中的应用[D].西安:西北工业大学,2007.
  • 6Deb K. Multi-objective optimization using evolutionary algorithms [M].Chichester, UK: John Wiley & Sons, 2001.
  • 7Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms [ D ]. Nashville: Vanderhilt University , PhD thesis, 1984.
  • 8Goldberg,D E. ,Richardson J. Genetic algorithms with sharing for multimodal function optimization [ A ]. Proceedings of the Second International Conference on Genetic Algorithms [ C]. Massachusetts, US:L Erlbaum Associates Inc, 1987,41 - 49.
  • 9Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II - JJ. IEEE Transactions on Evolutionary Computation, 2002,6(2) : 182 - 197.
  • 10Come D W, Jerram N R,KnowlesJ D,Oates M J,PESA-II:region-based selection in evolutionary multiobjective optimization [ A]. Proceedings of the Genetic and Evolutionary Computation Conference( GECCO' 2001 ) [ C ]. San Francisco, California: Morgan Kaufmann Publishers, 2001.283 - 290.

共引文献51

同被引文献112

引证文献16

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部