摘要
高镁低镍硫化矿细菌浸出液中有价金属镍离子浓度为300 mg·L^-1左右,杂质金属镁离子浓度高达10~20 g·L^-1,过高的镁离子浓度使细菌大量死亡,浸出无法继续,且常规方法难以对镍离子进行提取。本文采用离子交换树脂CN-27对浸出液进行吸附,镍镁吸附比例约为1∶10,小于原液中的镍镁比例1∶50。利用不同浓度硫酸溶液进行树脂解吸,当硫酸浓度为9 g·L^-1时,镁离子首先从树脂上洗脱下来,而镍离子几乎不被洗脱;当硫酸浓度为36 g·L^-1时,镍离子开始从树脂上洗脱下来。实验测得该条件下树脂对镍离子的穿透交换容量为0.487mmol·g-1(0.613 mmol·ml-1)。用较高浓度的硫酸对吸附在离子交换树脂上的镍离子进行解吸,其流出液中镍离子平均浓度为4.84 g·L^-1,富集比在8倍以上,镍离子的解吸率达到97.47%。
The concentration of Ni2 + in the bioleaching solution of low-grade nickel-bearing sulfide ore containing high magnesium was about 300 mg·L^-1,and the concentration of Mg^2+was 10 ~ 20 g·L^-1. The high concentration of Mg^2+could kill the bacteria and make the bioleaching hard to continue. The ion-exchange resin CN-27 was used for the separation of nickel and magnesium in this paper. The adsorption ratio of Ni2 +to Mg^2+was 1∶ 10,which was smaller than the ratio of 1∶ 50 in the original solution. Different concentrations of sulfuric acid were used for resin desorption. Mg^2+was desorbed from the resin,and Ni2 +was hardly desorbed in the sulfuric acid of 9 g·L^-1. When the sulfuric acid concentration was 36 g·L^-1,Ni2 +started to be desorbed. The exchange capacity of Ni2 +was0. 487 mmol·g- 1( 0.613 mmol·ml- 1). The average concentration of Ni2 +in the solution was 4. 84 g·L^-1,which increased by 8 times and the desorption rate was up to 97. 47%.
出处
《稀有金属》
EI
CAS
CSCD
北大核心
2014年第5期855-860,共6页
Chinese Journal of Rare Metals
基金
国家科技部重点基础研究发展计划项目(2010CB630906)
国家科技部高技术研究发展计划项目(2012AA061502)资助
关键词
离子交换
生物浸出液
高镁
镍镁分离
ion exchange
bioleaching solution
high-magnesium content
separation nickel from magnesium
作者简介
谢刚(1987-),男,河北张家口人,硕士研究生,研究方向:生物冶金,E-mail:higgins1987@163.com;
通讯作者:温建康,教授,电话:010-82241313,E-mail:kang3412@126.com