期刊文献+

阵列信号降采样低秩矩阵的恢复方法 被引量:7

Improved low-rank recovery method for sparsely sampling data in array signal processing
在线阅读 下载PDF
导出
摘要 矩阵填充可以有效恢复阵列信号降采样数据,从而得到等效的全采样回波信号.然而,现有基于矩阵填充的阵列波达方向估计方法要求回波数据在不同快拍下随机选择采样序列,以满足采样数据的随机性.当部分阵元在整个观测时间内关闭或损坏时,上述方法将失效.因此,笔者提出了一种改进的降采样数据恢复方法,利用阵元间的相关特性,将单快拍下的信号矢量变换到一个等效的低秩矩阵,继而通过求解该矩阵的最小核范数,实现对缺失数据的有效估计.仿真结果表明,该方法可以有效恢复降采样数据,抑制噪声,提高波达方向的估计性能. Matrix Completion (MC) theory can recover the under-sampled data in the array signal processing,further estimating the direction of arrival(DOA)as the fully sampled data does.However,it is required that the data should be under-sampled randomly in different snapshots which satisfy the randomness of MC theory.When some sensors are unsampled or broken in the whole observing time,the previous method would fail.To address this problem,a new processing method is proposed in this paper. The inner relationship among sensors is used,and then we reshape the signal vector in a single snapshort into an equivalent low-rank matrix,which can be recovered effectively by minimizing the nuclear norm. Simulation results validate the effectiveness of the proposed method.Meanwhile,the method can lower the noie power,and improve the performance of the DOA.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期30-35,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61231017) 国家973计划资助项目(2010CB731903)
关键词 阵列信号 矩阵填充 低秩矩阵 波达方向估计 array signal processing matrix completion low rank matrix direction of arrival
作者简介 杨东(1988-),男,西安电子科技大学博士研究生,E—mail:yangdongxd@gmail.com.
  • 相关文献

参考文献12

  • 1王凌,李国林,刘坚强,毛维平.一种基于数据矩阵重构的相干信源二维测向新方法[J].西安电子科技大学学报,2013,40(2):130-137. 被引量:15
  • 2Larsson E G, Stoica P. High-resolution Direction Finding: the Missing Data Case[J]. IEEE Transactions on Signal Processing, 2001, 49(5): 950-958.
  • 3Vigneshwaran S, Sundararajan N, Saratchandran P. Direction of Arrival (DOA) Estimation under Array Sensor Failures Using a Minimal Resource Allocation Neural Network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55 (2) : 334-343.
  • 4Candes E J, Recht B. Exact Matrix Completion via Conves Optimization [J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772.
  • 5Candes E J, Plan Y. Matrix Completion with Noise[J]. Proceedings of the IEEE, 2010, 98(6) : 925-936.
  • 6Candes E J, Tao T. The Power of Convex Relaxation: Near-optimal Matrix Completion [J]. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080.
  • 7郭慧杰,赵保军.基于矩阵填充的小波图像压缩算法[J].系统工程与电子技术,2012,34(9):1930-1933. 被引量:5
  • 8Yan H, Wang R, Li F. Ground Moving Target Extraction in a Multichannel Wide-area Surveillance SAR/GMTI System via the Relaxed PCP [J]. IEEE Transactions on Geoscience Remote Sensing, 2013, 10(3) : 617-621. http://arxiv.org/abs/1009. 5055.
  • 9Yerriswamy T, Jagadeesha S N. Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation [J]. International Journal of Signal and Image Processing, 2011, 9.(3) : 55-67.
  • 10Weng Z, Wang X. Low-rank Matrix Completion for Array Signal Processing[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2012: 2697-2700.

二级参考文献32

  • 1叶中付,沈凤麟.一种快速的二维高分辨波达方向估计方法——混合波达方向矩阵法[J].电子科学学刊,1996,18(6):567-573. 被引量:14
  • 2刁鸣,缪善林,张一飞.基于特殊阵列的相干信源二维测向新方法[J].系统工程与电子技术,2007,29(3):338-340. 被引量:3
  • 3刘志刚,汪晋宽,王福利.虚拟空间平滑算法[J].电子学报,2007,35(9):1762-1765. 被引量:18
  • 4Chervonenkis A Y. Problems of machine learning[C]//Proc, of the 4th International Conference on Pattern Recognition and Machine Intelligence, 2011 : 21 - 23.
  • 5Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6) :1031 - 1044.
  • 6Donoho D L. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289 - 1306.
  • 7Candes E J, Recht B. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9(6) :717 - 772.
  • 8Recht B, Xu W Y, Hassibi B. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization[C]//Proc, of the 47th IEEE Conference on Decision and Control, 2008:3065 - 3070.
  • 9Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system identifiea-tion [J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(3) :1235 - 1256.
  • 10Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3) : 615 - 640.

共引文献18

同被引文献22

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部