期刊文献+

联合多尺度分块和协作表示的虹膜识别算法 被引量:1

An Iris Recognition Algorithm combined Multi-scale Patch and Collaborative Representation
在线阅读 下载PDF
导出
摘要 基于稀疏表示的虹膜识别方法(SRIR)相对于传统的虹膜识别方法,在处理噪声干扰等问题,识别效果相对较好,具有较好的鲁棒性。但在样本集不足的情况下,识别性能受到影响,存在运行耗时过多、计算复杂度较高的问题。针对上述问题,提出了一种联合多尺度分块和协作表示的虹膜识别算法。通过将虹膜图像按照多个尺度大小分别进行均匀分块,从而达到有效地利用虹膜特征,然后分别对每个尺度下的虹膜图像子块进行基于协作表示的识别,以降低算法耗时,最后将识别结果通过贝叶斯融合方法得到最终的分类。实验结果表明,该算法对于虹膜样本集较少的问题,比原有的SRIR方法耗时低,识别率高,复杂度低。 Iris recognition based sparse recognition (SRIR) is very competitive with traditional recognition approaches on effectiveness and robustness. However, the recognition rate will drop dramatically when the available training samples per subject are very limited, and the computational cost is high. To solve this problem, iris recognition is operating collaborative representation on multi-scale patches and combining the recognition outputs of all patches. Instead of recognition the entire iris image directly, the iris image is divided into several non-overlapping patches with the same scale. Considering the fact that patches on different scales could have complementary information for classification, iris images are patched on multi-scale. The different multi-scale patches are recognized separately based collaborative representation which reduces the computational complexity, while the ensemble of multi-scale outputs is achieved by Bayesian fusion. Experimental results on iris databases show that, although both training and testing image per subject might be very limited, the proposed method outperforms the state-of-the-art recognition approaches on effectiveness and computational cost.
出处 《信号处理》 CSCD 北大核心 2014年第9期1025-1033,共9页 Journal of Signal Processing
基金 国家自然科学基金(61071200)资助课题 河北省自然科学基金(F2014203076)资助课题
关键词 虹膜识别 稀疏表示 协作表示 贝叶斯融合 iris recognition sparse representation collaborative representation Bayesian fusion
作者简介 陈书贞女,1968年生,河北定州人,硕士,燕山大学信息科学与工程学院副教授,主要从事图像处理、模式识别及压缩传感等领域的研究。E—mail:then_sz818@163.com 于倩女,1986年生,河北邢台人,燕山大学硕士研究生,主要研究方向为模式识别和图像处理技术。E—mail:18733448126@163.com 练秋生男,1969年生,江西遂川人,博士,燕山大学信息科学与工程学院教授,主要从事图像处理、压缩传感及稀疏表示等领域的研究。E—mail:lianqs@ysu.edu.cn
  • 相关文献

参考文献19

  • 1Zafar M F, Zaheer Z K J. Novel iris segmentation and rec- ognition system for human identification[ J]. IEEE Applied Sciences and Technology(IBCAST) ,2013:128-131.
  • 2Fuad M A. A review on advances in iris recognition meth- ods [ J ]. International Journal of Computer Engineering Research, 2012,3(1) :1-9.
  • 3Daugman J. High congidence visual recognition of per- sons by test of statistical independence [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161.
  • 4Daugman J. How iris recognition works [ J ]. IEEE Image Processing, 2002,1 : 33-36.
  • 5Wildes R P. Iris recognition: an emerging biometric tech- nology[J]. IEEE, 1997, 85(9): 1348-1363.
  • 6Ma L, Tan T N, Wang Y H. Personal identification based on iris texture analysis [ J]. IEEE Transantions on Pattern Analysis and Machine Intelligence, 2003, 25 (12) :1519-1533.
  • 7Liu C, Wechsler H. Gabor Feature Based Classification Using the Enhanced Fisher Linear Diseriminant Model for Faee Recognition [ J ]. IEEE Trans. Image Processing, 2002,11 (4) :467- 476.
  • 8Lee C J, Chen T Y, Sun J D. Combining Gradienffaces, principal component analysis, and Fisher linear diserimi- nant for face recognition[ J]. IEEE Networked Computing and Advanced Information Management, 2010,Aug: 622- 625.
  • 9Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Ro- bust Face Recognition via Sparse Representation [ J ]. IEEE Trans. Pattern Anal. Mach. Intell. 2009,31 (2) : 210-227.
  • 10曾军英,甘俊英,翟懿奎.Gabor字典及l_0范数快速稀疏表示的人脸识别算法[J].信号处理,2013,29(2):256-261. 被引量:15

二级参考文献12

  • 1John Wright, Allen Yang, Arvind Ganesh and S. Shankar Sastry. Robust Face recognition via Sparse Representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009,31 : 210-227.
  • 2M. Turk and A. Pentland. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991, 3 ( 1 ) :71- 86.
  • 3K. Etemad and R. Chellappa. Discriminant analysis for recognition of human face images I J]. J. Opt. Soc. Am. A, 1997, 14(8): 1724-1733.
  • 4M. Bartlett, J. Movellan, and T. Sejnowski. Face recog- nition by independentcomponent analysis[J~. IEEE Trans- actions on Neural Networks, 2002, 13 (6) : 1450-1464.
  • 5Shen L L and Bai L. A review on Gabor wavelets for face recognition [ J]. Pattern Analysis and Application, 2006, 9(2) :273-292.
  • 6Amin M A and Yan H. An empirical study on the charac- teristics of Gabor representations for face recognition[ J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23 (3) : 401-431.
  • 7M. Yang and L. Zhang, Gabor Feature based Sparse Rep- resentation for Face Recognition with Gabor Occlusion Dic- tionaryE C ]. in ECCV, 2010.
  • 8Dror Baron, Marco F. Duarte. Distribu'ted Compressivq Sensing[ C]. Proceedings of the Sensor, Signal and Infor mation Processing (SenSIP) Workshop, 2008.
  • 9Mohimani H, Zadeh M, Jutten C. A fast approach for o- ver complete sparse decomposition based on smothed L0 norm[ J]. IEEE Transactions on Signal Processing,2009, 57(1) :289-301.
  • 10Hyder M,Mahata K. An improved smoothed LO approxima- tion algorithm for sparse representation [ J ]. IEEE Transac- tions on Signal Processing,2010,58(4) : 2194 -2205.

共引文献14

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部