期刊文献+

石墨烯/金属氧化物锂离子电池负极材料的研究进展 被引量:2

Progress in Graphene/Transition Metal Oxide Composite Materials as Anode for Lithium Ion Batteries
在线阅读 下载PDF
导出
摘要 石墨烯作为锂离子电池负极材料时,比克容量是石墨的两倍,但是纯石墨烯因其在充放电过程中团聚,导电循环性能差.为了延长石墨烯的循环寿命,一种有效的方法是在石墨烯中加入过渡金属氧化物(CoOx,CuOx,NiOx,FeOx和MnOx等).这些过渡金属氧化物比克容量高(700~1000 mAh/g),但是在充放电过程中发生体积膨胀,导致其循环性能差.过渡金属氧化物与石墨烯复合后,能够弥补彼此的缺点,具有优异的电化学性能.综述了石墨烯/过渡金属氧化物复合物在锂离子电池负极材料上的应用,并研究了石墨烯加入后对复合材料的性能提升的原因. Graphene,a two-dimension single layer graphite,is the new carbon material beyond the diamond,fullerene,carbon nanotube and graphite.Graphene exhibits excellent physical and chemical properties,such as large electronic conductivity,high thermal conductivity,high mechanical strength and vast surface area.This led to an explosion of interest in the study of graphene,aiming for wide-ranging and diversified technological applications.This review highlights graphene/transition metal oxides as anode materials for lithium ion batteries.Graphene is a favorer in lithium ion batteries because it is an idea matrix for loading the active materials on its surface and graphene can offer high electronic conductivity as well as buffer effect material for accommodating the volume change of transition metal oxide as anode materials for lithium ion batteries.The transition metal oxides,namely CoOx,CuOx,NiOx,FeOx and MnOx,were paid much attention as anode materials for their high specific capacity (700-1000 mAh/g).However,the cycling performance and rate capability of transition metal oxides are undesired because of their low electronic conductivity and large volume change during charge/discharge process.Therefore,it is an effective way to solve these problems by cooperated with the graphene.And we also study the influence of graphene on the electrochemical performance of lithium ion batteries.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第17期136-140,144,共6页 Materials Reports
基金 科研院所技术开发研究专项资金(2013EG113174)
关键词 石墨烯 锂离子电池 负极材料 过渡金属氧化物 graphene lithium ion batteries anode material transition metal oxides
作者简介 黄承焕:博士,工程师,从事新能源材料的研发及产业化Tel:0731—88657077E-mail:o-nihao@163.comlchhuang@minemetal.com
  • 相关文献

参考文献77

  • 1Bolotin K I,Sikes K J,Jiang Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Commun,2008,146(9-10):351.
  • 2Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Lett,2008,8 (3):902.
  • 3Chae H K,Siberio-Perez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523.
  • 4Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321 (5887):385.
  • 5Moon I K,Kim J I,Lee H,et al.2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes[J].Sci Rep,2013,3:1112.
  • 6Shang J,Ma L,Li J,et al.The origin of fluorescence from graphene oxide[J].Sci Rep,2012,2:792.
  • 7Sheng K,Sun Y,Li C,et al.Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J].Sci Rep,2012,2:247.
  • 8El-Kady M F,Strong V,Dubin S,et al.Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J].Science,2012,335(6074):1326.
  • 9Gabor N M,Song J C,Ma Q,et al.Hot carrier-assisted intrinsic photoresponse in graphene[J].Science,2011,334(6056):648.
  • 10Miller J R,Outlaw R A,Holloway B C.Graphene double-layer capacitor with ac line-filtering performance[J].Science,2010,329(5999):1637.

同被引文献38

  • 1赵阳,黄英,王秋芬,王潇雅,宗蒙,何倩.石墨烯及其复合材料作为锂离子电池负极材料的研究进展[J].材料开发与应用,2012,27(6):96-101. 被引量:5
  • 2王凤飞,王新庆,杨冰,李振华,王淼.锂离子电池负极材料的研究进展[J].纳米技术与精密工程,2004,2(3):192-195. 被引量:10
  • 3王金才,李峰,刘畅,李洪锡.锂离子电池碳负极材料的研究现状与发展[J].腐蚀科学与防护技术,2004,16(5):300-303. 被引量:13
  • 4余小军,綦瑞萍,杨绍斌.包覆和掺杂对锂离子电池石墨负极材料的影响[J].江苏技术师范学院学报,2006,12(4):6-9. 被引量:3
  • 5Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoOz materials with highly reversible lithium storage capacity[J]. Nano Lett, 2009,9(12) :4215.
  • 6Hu B, Mai L Q, Chen W, et al. From Mo03 nanobelts to MoOz nanorods , Structure transformation and electrical transport[J]. ACS Nano,2009,3(2) :478.
  • 7Shishkin A V, Sokol M Y, Vostrikov A A. Synthesis of Mo02 particles during oxidation of bulk molybdenum samples by supercritical water[J]. Thermophys Aeromechan , 2013,20(5):647.
  • 8Liu Y, Zhang H, Ouyang P, et al. One-pot hydrothermal synthesized MoOz with high reversible capacity for anode ap-plication in lithium ion battery[J]. Electrochimica Acta, 2013,102(15):429.
  • 9Tang W, Wang X J, Hou Y Y, et al. Nano LiMn204 as cathode material of high rate capability for lithium ion batteries[J]. J Power Sources, 2012,198(15): 308.
  • 10Xu Y, Liu Q, Zhu Y, et al. Uniform nano-Sn/C composite anodes for lithium ion batteries[J]. Nano Lett,2013, 13(2): 470.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部