摘要
系统阐述了利用稀疏成分分析(Sparse Component Analysis,SCA)算法进行欠定图像盲源分离。首先在估计出源图像个数的基础上,利用线性聚类估计混合矩阵;其次将压缩感知(Compressed Sensing,CS)应用到恢复源图像中。为了得到自适应的过完备稀疏字典来提高分离效果,提出了利用K均值奇异值分解(K-means Singular Value Decomposition,K-SVD)算法对过完备DCT字典循环迭代训练的思想,并对图像分块处理来减少计算复杂度;最后进行了仿真测试并对分离出的图像进行了分析和进一步处理。
The paper introduces the underdetermined image blind source separation using sparse component analysis (SCA)algorithm. Firstly, the mixing matrix is estimated using linear clustering based on the estimation of the number of source images. Then,the compressed sensing (CS) is used to resume the source images. To get a self-adaptive over-complete dictionary and improve theseparation efficiency,a design idea is proposed, which implements loop iteration training for overeomplete DCT dictionary based onK-means singular value decomposition (K-SVD) algorithm. The images are divided into blocks to reduce the computational complexity.The simulation test is carried out and the separated images are analyzed and further processed.
出处
《无线电通信技术》
2014年第5期65-68,共4页
Radio Communications Technology
基金
国家重点基础研究发展规划项目计划(973计划)资助(2013CB837900)
国家自然科学基金国际合作与交流项目资助(11261140641)
关键词
欠定图像盲源分离
SCA算法
压缩感知
K-SVD
图像分块
underdetermined image blind source separation
SCA algorithm
compressed sensing
K-SVD
image blocks
作者简介
瞿丽华(1989-),女,硕士研究生。主要研究方向:图像处理。
曹继华(1964-),男,教授,硕士生导师。主要研究方向:图像、视频信号处理,图像分析,图像理解和盲信号处理。