期刊文献+

一类特殊三圈图关于Merrifield-Simmons指标和Hosoya指标的排序 被引量:1

Orderings of A Class of Special Tricyclic Graphs with Respect to Merrifield-Simmons Indices and Hosoya Indices
在线阅读 下载PDF
导出
摘要 研究了一类三圈图Tk的Merrifield-Simmons指标和Hosoya指标,根据Cq上2接点u和v之间的距离,给出了该类三圈图关于这2种指标的排序. The Merrifield-Simmons index and Hosoya index of a class of tricyclic graphs Tk is investigated. According to the distance between u and v on Cq ,their orderings with respect to these two indices are obtained.
出处 《宁夏大学学报(自然科学版)》 CAS 2014年第3期212-215,共4页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161041) 中央高校基本科研专项基金资助项目(31920140059) 西北民族大学中央高校科研专项基金资助研究生项目(ycx14029) 西北民族大学科研创新团队计划资助项目
关键词 三圈图 MERRIFIELD-SIMMONS指标 HOSOYA指标 排序 tricyclic graph Merrifield-Simmons index Hosoya index order
作者简介 田文文(1987-),男,硕士研究生,主要从事图论与组合优化研究,(电子信箱)tianwenwen0202@163.com. 通信联系人:田双亮(1965-),男,教授,主要从事图论及组合优化研究,(电子信箱)sl_tian@163.com.
  • 相关文献

参考文献16

  • 1MERRIFIELD R E, SIMMONS H E. Topological methods in chemistry[M]. New York : Wiley, 1989.
  • 2HOSOYA H. Topological index[J]. Bull Chem Soc Japan, 1971,44 : 2332-2339.
  • 3GUTMAN I, POLANSKY O E. Mathematical Concepts in Organic Chemistry[M]. Berlin: Springer, 1986.
  • 4GUTMAN I,CYVIN S J. Introduction to the theory of benzenoid hydrocarbons[M]. Berlin: Springer, 1989.
  • 5YE Yali, PAN Xiangfeng, LIU Huiqing. Ordering unicyclic graphs with respect to Hosoya indices and Merrifield-Simmons indices [J]. MATCH Commun Math Comput Chem, 2008,59 : 191-202.
  • 6DENG Hanyuan, CHEN Shubo , ZHANG Jie. The Merrifield-Simmons index in (n,n q- 1)- graphs[J]. Journal of Mathematical Chemistry, 2008, 43 (1): 75-91.
  • 7DENG Hanyuan. The smallest Merrifield-Simmons index of (n,n q- 1) -graphs[J]. Math Comput Model, 2009,49 (1/2) : 320-326.
  • 8DENG Hanyuan. The smallest Hosoya index in (n,n-q- 1) -graphs[J]. Journal of Mathematical Chemistry, 2008,43(1) : 119-133.
  • 9XU Kexiang,GUTMAN I. The greatest Hosoya index of bicyclic graphs with given maximum degree [J]. MATCH Commun Math Comput Chem, 2011,66 ( 3 ) : 795-824.
  • 10周旭冉,王力工.一类双圈图的两种指标的排序[J].山东大学学报(理学版),2011,46(11):44-47. 被引量:12

二级参考文献19

  • 1张莲珠,田丰.Extremal hexagonal chains concerning largest eigenvalue[J].Science China Mathematics,2001,44(9):1089-1097. 被引量:6
  • 2BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: The Macmillan Press, 1976.
  • 3PRODINGER H, TICHY R F. Fibonacci numbers of graph[J]. The Fibonacci Quaterly, 1982, 20( 1 ) :16-21.
  • 4HOSOYA H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of satu: rated hydrocarbons[J]. Bull Chem Soc Jpn, 1971,44(9) : 2332-2339.
  • 5GUTMAN I, POLANSKY O E. Mathematical concept in organic chemistry[M]. Berlin: Springer, 1986.
  • 6MERRIFIELD R E, SIMMONS H E. Topological methods in chemistry[M]. New York: Wiley, 1989.
  • 7GUTMAN I. Acyclic systems with extremal Huckel a-r-electron energy[J]. Theor Chim Acta, 1977, 45:79-87.
  • 8DENG Hanyuan, CHEN Shubo. The extremal uncyclic graphs with respect to Hosoya index and Merrifield-Simmons index [J]. MATCH Commun Math Comput Chem, 2008, 59 : 171-190.
  • 9DENG Hanyuan. The largest Hosoya index of ( n, n + 1 ) graphs[J]. Comput Math Appl, 2008, 56:2499-2506.
  • 10GUTMAN I. Correction of the paper "Graphs with greatest number of matchings" [J]. Publ Inst Math ( Beograd), 1982, 32 (46) : 61-63.

共引文献11

同被引文献8

  • 1HOSOYA H. Topological index[J]. Bull Chem Soc Japan, 1971,44 .. 2332-2339.
  • 2MERRIFIELD R E,SIMMONS H E. Topological methods in chemistry[M]. New York: Wiley, 1989.
  • 3GUTMAN I, CYVIN S J. Introduction to the theory o{ benzenoid hydrocarbons[M]. Berlin:Springer. 1989.
  • 4YE Yali, PAN Xiang[eng, LIU Huiqing. Ordering unieyclic graphs with respect to Hosoya indices and Merrifield-Sim- mons indices[J]. MATCH Commun Math Comput Chem, 2008,59(1) :191-202.
  • 5GUTMAN I, POLANSKY O E. Mathematical concepts in organic chemistry[M]. Berlin: Springer-Vedag, 1986.
  • 6WAGNER S G. Extremal trees with respect to Hosoya index and Merrifield-Simmons index[J]. MATCH Commun Math Comput Chem,2007,57(1) :221-233.
  • 7田文文,田双亮.一类双圈图关于两种拓扑指标的排序[EB/OL].[2014-01-28].http://www, cnki. net/KCMS/de-tail/10. 3778/j. issrh 1002-8331. 1309-0210. html.
  • 8周旭冉,王力工.一类双圈图的两种指标的排序[J].山东大学学报(理学版),2011,46(11):44-47. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部