期刊文献+

基于二阶总广义变差的欠采样图像重构方法

Undersampling image reconstruction method based on second order total generalized variation model
在线阅读 下载PDF
导出
摘要 针对欠采样图像重构的凸优化问题,提出一种基于二阶总广义变差(TGV)范数最小化的算法。利用图像的二阶TGV半范作为正则约束项,自动地平衡一、二阶导数项,使得该算法可以更好地恢复图像边缘,有利于平滑噪声,避免阶梯效应。为了有效地计算该模型,通过正交投影和调整权重阈值对每一步迭代结果进行修正,最终获得更准确的重构结果。实验结果表明,与正交匹配追踪(OMP)模型和全变差(TV)模型比对,该算法重构的图像其峰值信噪比(PSNR)及结构相似度(SSIM)都有明显的提高,重构效果较好。 Aiming at convex optimization problem of undersampling image reconstruction, a new image reconstruction algorithm based on the second order Total Generalized Variation (TGV) model was proposed. In the new model, the second- order TGV semi-norm of images was used as the regularization term, which could automatically balance the first order and second order derivative. The characteristics of the TGV made the new model recover the image edge information better, smooth noise and avoid the staircasing effect. For computing the new model effectively, the orthogonal projection and the adjustment of weight threshold were presented to adaptively amend the iteration results of each step in order to obtain accurate image reconstruction results. The experimental results show that the proposed model can get better results with large value of Peak Signal-to-Noise Ratio (PSNR) and Structure SIMilarity (SSIM) in image reconstruction compared with Orthogonal Matching Pursuit (OMP) and Total Variation (TV) models.
出处 《计算机应用》 CSCD 北大核心 2014年第10期2953-2956,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61201179)
关键词 压缩感知 总广义变差 图像重构 阶梯效应 全变差 Compressed Sensing (CS) Total Generalized Variation (TGV) image reconstruction staircasing effect Total Variation (TV)
作者简介 卫津津(1987-),女,山西临汾人,博士研究生,主要研究方向:图像/视频处理;电子邮箱weijin525@163.com 金志刚(1972-),男,上海人,教授,博士,主要研究方向:网络与信息安全、图像/视频处理; 王颖(1977-),女,河北张家口人,博士,主要研究方向:网络安全。
  • 相关文献

参考文献13

  • 1CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strategies [ J]. IEEE Transactions on Information Theory, 2006, S2(12) : 5406 - 5425.
  • 2FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient pro- jection for sparse reconstruction: application to compressed sensing and other inverse problems [ J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4) : 586 -598.
  • 3何宜宝,毕笃彦,马时平,岳耀帅.梯度投影法求解压缩感知信号重构问题[J].北京邮电大学学报,2012,35(4):112-115. 被引量:8
  • 4BIKKI J, DOSS B. Sparse image reconstruction using nonlinear ill- tering for compressed sensing [ J]. International Journal of Engineer- ing Research and Technology, 2012, 1(4) : 1 -6.
  • 5DAI Q, SHA W. The physics of compressive sensing and the gradi- ent-based recovery algorithms [ EB/OL]. [ 2009- 07- 04]. http:// arxiv, org./abs/0906. 1487.
  • 6樊博,杨晓梅,胡学姝.基于压缩感知的超分辨率图像重建[J].计算机应用,2013,33(2):480-483. 被引量:18
  • 7李青,杨晓梅,李红.基于压缩感知的自适应正则化磁共振图像重构[J].计算机应用,2012,32(2):541-544. 被引量:9
  • 8BREDIES K, KUNISCH K, POCK T. Total generalized variation [J]. SIAM Journal on Imaging Sciences, 2010, 3(3) : 492 -526.
  • 9BREDIES K, VALKONEN T. Inverse problems with second-order total generalized vafation constraints [ EB/OL]. [ 2014- 04- 18]. http://www, academia, edu/5055016/Inverse_problems_with_sec- ond - order_total_generalized variation_constraints.
  • 10KNOLL F, BREDIES K, POCK T, et al. Second order Total Gen- eralized Variation (TGV) for MRI [ J]. Magnetic Resonance in Medicine, 2011,65(2) : 480 -491.

二级参考文献38

  • 1禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 2van den BERG E,FRIEDLANDER M P.In pursuit of a root[EB/OL].[2011-03-22].http://www.optimizationonline.org/DBFILE/2007/06/1708.pdf.
  • 3JOSHUA T,ANMANDO M,ERIC B.Sparse MRI reconstruction via multiscale 10-continuation[C]//SSP '07:IEEE/SP 14th Workshop on Statistical Signal Processing.2007:176-180.
  • 4DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 5TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 6FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1 (4):586-598.
  • 7BIOUCAS-DIAS J M,FIGUEIREDO M A T,OLIVEIRA J P.Total variation-based image deconvolution:A majorization-minimization approach[C]//ICASSP 2006:2006 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE,2006,2:278-281.
  • 8LUSTIG M,DONOHO D,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 9CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 10XUEFENG,LIU QUAN-SHENG,FAN WEI-HONG.Iterative image restoration using a non-local regularization function and a local regularization operator[C]// ICPR'06:18th International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2006,3:766-769.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部