期刊文献+

核壳结构氧化锌/石墨烯的光催化性能及机理研究 被引量:10

Photocatalytic activity of ZnO/graphene core-shell structure and its mechanism study
在线阅读 下载PDF
导出
摘要 采用一步法制备了还原氧化石墨烯(RGO)包覆ZnO纳米颗粒(NPs)的准核壳结构ZnO@RGO光催化复合材料.光催化实验表明,石墨烯的包覆使得ZnO@RGO对有机染料亚甲基蓝(MB)的光催化效率较ZnO NPs提高了10倍左右.透射电镜(TEM)和X射线衍射(XRD)表明,ZnO@RGO是由纤锌矿ZnO和石墨烯组成,且石墨烯包覆了颗粒尺寸约为6nm的ZnO.X射线光电子能谱(XPS)和拉曼谱(Raman)表明,石墨烯在ZnO中引入了应力及氧空位(VO).光致发光谱(PL)进一步表明,与ZnO纳米晶相比,ZnO@RGO的带间发射强度降低了约80%,并且出现了对应于VO的绿光发射峰.最后,根据上述实验结果提出了ZnO@RGO光催化活性增强的机理:石墨烯纳米片和界面应力作用所产生的氧空位对光生电子的高效协同俘获作用是导致ZnO@RGO具有高效光催化活性的内在原因. The ZnO@ RGO quasi-core-shell composite photocatalyst ,where ZnO nanoparticles (NPs) were wrapped by graphene nanoshells , was prepared via a one-step method . Photocatalytic experiments indicated that the photodegradation efficiency of ZnO@ RGO on methylene blue (MB) increased by about 10 times compared to that of ZnO NPs .ZnO nanocrystals with the particle size of about 6 nm wrapped by RGO (reduced graphene oxide) nanosheets could be observed in transmission electron microscopy (TEM ) images .X-ray diffraction (XRD) patterns showed that the structure of ZnO was hexagonal wurtzite .X-ray photoelectron spectroscopy (XPS ) and Raman scattering manifested that there was strong interfacial interaction between ZnO and graphene which introduced about 3% interfacial stress and quantities of oxygen vacancies (VO ) . Photoluminescence (PL ) further evidenced the approximately 80% decrease in band-gap emission intensity in ZnO@ RGO compared with that in ZnO and the presence of interfacial VO. Finally ,the mechanism of the enhanced photocatalytic activity in ZnO@ RGO was proposed .The effective synergetic capture of graphene nanoshells and VO as a result of interfacial strain interaction improves the photocatalytic activities of ZnO based semiconductor photocatalysts .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第8期661-666,共6页 JUSTC
基金 国家自然科学基金(U1332131)资助
关键词 氧化锌 光催化活性 纳米颗粒 石墨烯 降解 核壳 ZnO photocatalytic activity nanoparticle graphene degradation core-shell
作者简介 杨晓喻,男,1989年生,硕士.研究方向:硬X射线吸收谱学.E-mail:yxiaoyu@mail.ustc.edu.cn 通讯作者:闫文盛,博士/副研究员.E-mail:ywsh2000@ustc.edu.cn
  • 相关文献

参考文献25

  • 1Fuijishima A,Honda K. Klectrochemical photolysis ofwater at a semiconductor elect rode [J]. Nature. 1972.238: 37-38.
  • 2Luc) Q D, Yu X Y. Lei B X,et al. Reduced grapheneoxide-hierarchical ZnO hollow sphere composites withenhanced photocurrent and photocatalytic activity [J].Journal of Physical Chemistry C, 2012,116 : 8 111-8 117.
  • 3Gouvea C A K, Wypych F,Moraes S G,et al.Semiconductor-assisted photocatalytic degradation ofreactive dyes in aqueous solution [J], Chemosphere,2000,40: 433-440.
  • 4Woan K,Pyrgiotakis G,Sigmund W. Photocatalyticcarbon-nanotube-Ti()2 composites [ J ]. AdvancedMaterials, 2009,21: 2 233-2 239.
  • 5Chen P, Xiao T Y,Li H H,et al. Nitrogen-dopedgraphene/ZnSe nanocomposites : Hydrothermalsynthesis and their enhanced electrochemical andphotocatalytic activitievS [J]. Acs Nano, 2012,6:712-719.
  • 6Sakthivel S,Geissen S U,Bahnemann D W, et al.Enhancement of photocatalytic activity bysemiconductor heterojunctions: ?-Fe2O3,WC)3 and CdSdeposited on ZnO [J]. Journal of Photochemistry andPhotobiology A-Chemistry, 2002, 148 : 283-293.
  • 7Height M J,Pratsinis S E,Mekasuwandumrong O, etal. Ag-Zn() catalysts for UV-photodegradation ofmethylene blue [ J ]. Applied Catalysis BrEnvironmental, 2006,63 : 305-312.
  • 8Jiang L Q, Gao L. Fabrication and characterization ofZn()-coated multi-walled carbon nanotubes withenhanced photocatalytic activity [ J ]. MaterialsChemistry and Physics, 2005,91: 313-316.
  • 9Li B J,Cao H Q. ZnO @ graphene composite withenhanced performance for the removal of dye fromwater [J]. Journal of Materials Chemistry, 2011,21 :3346-3 349.
  • 10Fu H B, Xu T G,Zhu S B, et al. Photocorrosioninhibition and enhancement of photocatalytic activityfor ZnO via hybridization with C60 [J]. EnvironmentalScience Technology,2008, 42: 8 064-8 069.

同被引文献120

  • 1李源,郑文琦,丁冠云,白怡静.石墨烯、硅烯纳米器件量子输运性质研究进展[J].杭州电子科技大学学报(自然科学版),2020,40(1):79-87. 被引量:1
  • 2Fujishima A, Honda K. Electrochemical photolysis at a semicondu- ctor electrode water[J]. Nature, 1972,238(5385) :37.
  • 3Gouvea C A K, Wypych F, Moraes S G,et al. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution [J]. Chemosphere, 2000,40 ( 4 ) : 433-440.
  • 4Zhang Junying,Zhang Zhongtai ,Wang Tianming. A new luminescent phenomenon of ZnO due to the precipitate trapping effect of MgO [J]. Cheminform, 2004,35 (20) : 768-770.
  • 5Kou J H, Gao J, Li Zhaosheng, et al. Research on photocatalytic de- gradation properties of organics with different new photocatalysts [J ]. Curr. Org. Chem. ,2010,14(7) :728-744.
  • 6Balandin A A, Suchismita G, Bao Wenzhong,et al. Superior thermal conductivity of single-layer graphene [ J ]. Nano Lett., 2008,8 (3) : 902-907.
  • 7Gong Yongji,Yang Shubin,Liu Zheng,et al. Graphene-network- back boned architectures for high-performance lithium storage [J]. Adv. Mester., 2013,25 (29) : 3979-3984.
  • 8Choi W B, Lahiri I, Raghunandan S,et al. Synthesis of graphene and its applications:a review[J]. Critical. Rev. Solid. State. & Mater.Sci.,2010,35( 1 ) :52-71.
  • 9Pant H R, Park C H, Pokharel P,et al. ZnO micro-flowers assembled on reduced graphene sheets with high photocatalytic activity for re- moval of pollutants [J ]. Powder Technology, 2013,235 : 853-858.
  • 10Du Guixiang, Wang Xiaoxu, Zhang Lidong, et al. Controllable synth- esis of different ZnO architectures decorated reduced graphene oxide- nanoeomposites [ J ]. Materials Letters, 2013,96 (4) : 128-130.

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部