期刊文献+

基于Lasso及Adaptive Lasso的AR(p)模型定阶及参数估计 被引量:5

Lasso and Adaptive Lasso method of order determination and parameter estimation for AR(p)model
在线阅读 下载PDF
导出
摘要 Lasso类方法可以同时实现变量选择与参数估计,将之运用于AR(p)模型的定阶及参数估计,可以大大简化计算步骤和时间.本文在前人基础上利用Lasso类方法,改进了AR(p)模型的定阶与参数估计,通过计算机编程模拟,验证了此类方法的可行性,并比较了在不同样本量情况下,Lasso和Adaptive Lasso方法在定阶和参数估计两方面的优良性,最后将较优的Adaptive Lasso方法用于实际时间序列数据中,并对结果进行分析,指出了该方法的实用性. Lasso method can realize the variable selection and parameter estimation at the same time.This method can be applied to the problem of order determination and parameter estimation for AR(p)model,which can greatly simplify the calculation steps and times.Based on the studies of predecessors,this study can improve the parameter estimation and order determination for AR(p)model by means of Lasso method.Through computer simulation the feasibility of this method is verified.This article also compare the performance of Lasso and Adaptive Lasso method in different samples,then choose the Adaptive Lasso method for real time series data.As results are analyzed,the practicability of this method is pointed out.
出处 《浙江工业大学学报》 CAS 2014年第4期463-467,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学天元基金资助项目(11326126)
关键词 AR(P)模型 Lasso ADAPTIVE 模型定阶 参数估计 AR(p)model Lasso Adaptive Lasso order determination parameter estimation
作者简介 谢仪(1990-),女,新疆乌鲁木齐人,硕士研究生,研究方向为数理统计,E-mail:822122040@qq.com. 通信作者:景英川副教授,E—mail:184689432@qq.com.
  • 相关文献

参考文献9

  • 1ROBERT T. Shrinkage and Selection via the lasso[J].Journal of the Royal Statistical Society;Series B, 1996,58(1) :267-288.
  • 2ZOU H. The Adaptive lasso and its oracle properties[J]. Jour- nal of the American Statistical Association, 2006, 101 (476) : 1418-1429.
  • 3MEINSHAUSEN N. Lasso with relaxation[J]. Computational Statistics and Data Analysis, 2007,52 : 374-393.
  • 4陈阳,夏志明,高海菊.AR(p)模型参数估计和定阶的Lasso方法[J].西北大学学报:自然科学网络版,2011,9(6):0483.
  • 5BREIMAN L. Better subset regression using the non-negative garrote[J]. Technometrics, 1995 (37) : 373-384.
  • 6EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[R]. California : Stanford University, 2004 : 407-499.
  • 7FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regulaization paths for generalized linear models via eoordinate descent[J]. Journal of Statistical Software,2010,33(1) : 1-22.
  • 8王松桂 陈敏 陈立萍.线性统计模型[M].北京:高等教育出版社,2002..
  • 9徐国祥 胡清友.统计预测和决策[M].上海:上海财经大学出版社,2002(7)..

共引文献17

同被引文献16

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部