期刊文献+

利用合成的基因回路实现细胞水平上尿酸稳态控制的实验研究

Research on Control of Uric Acid Homeostasis at Cellular Level by a Synthetic Gene Circuit
在线阅读 下载PDF
导出
摘要 目的:利用合成生物学方法构建尿酸介导的基因回路,在细胞水平上研究回路对尿酸稳态的调控作用。方法:以耐辐射异常球菌R1基因组中转录抑制物基因hucR及其结合位点基因hucO为基础,化学合成具有转录抑制功能的基因mUTs及其结合位点的8串联结构hucO8,构建基因回路;转染HeLa细胞,通过检测分泌型碱性磷酸酶(SEAP)的表达量来验证回路的作用原理和对尿酸的感应作用;在此基础上,用优化的黄曲霉菌尿酸氧化酶(Uox)基因smUox替换SEAP基因,转染HeLa细胞,通过检测转染前后培养基中尿酸浓度的变化,验证回路对尿酸的调节作用。结果:分别构建了优化的转录抑制物表达载体pcDNA3.1/V5-mUTs、报告基因表达载体pSEAP-hucO8、优化的黄曲霉菌Uox表达载体phucO8-smUox、pBudCE4.1-smUox,双向共表达载体pBudCE4.1-SEAP-mUTs、pBudCE4.1-mUTs-smUox;单独转染pBudCE4.1-SEAP-mUTs或共转染pSEAP-hucO8和pcDNA3.1/V5-mUTs,通过检测培养基中SEAP的表达量,证明双载体及单载体回路对尿酸的感应作用;用smUox替换SAEP基因后,通过检测转染48 h后培养基中尿酸含量的变化,证明双载体及单载体基因回路均具有一定的尿酸调节能力。结论:在细胞水平上,构建的双载体基因回路(phucO8-smUox、pcDNA3.1/V5-mUTs)和单载体基因回路(pBudCE4.1-mUTs-smUox)均可实现对尿酸的感应及调控作用,在一定范围内通过增加mUTs与hucO8的摩尔比,可以改变回路对尿酸的调控范围及调节程度。 Objective: To study the regulation of uric acid homeostasis at cellular level introduced by uric acid-mediated gene circuit that was constructed with synthetic biology approach. Methods: Based on the transcriptional inhibitor hucR and its binding site hucO in the genome of Deinococcus radiodurans R1, synthesize optimized tran-scriptional inhibitor gene mUTs and its binding site 8-series structure(hucO8) chemically to construct the circuit;transfect HeLa cells, verifying the mechanisms of the circuit and its reaction to uric acid by assaying the expres-sion of secreted alkaline phosphatase(SEAP); based on these, use optimized Aspergillus flavus urate oxidase gene smUox to replace SEAP gene, transfect HeLa cells, and verify the ability of circuit to regulate the uric acid by as-saying the uric acid concentration change in the culture medium before and after the transfection. Results: The transcriptional inhibitor expression vector pcDNA3.1/V5-mUTs, reporter gene expression vector pSEAP-hucO8, smUox expression vector phucO8-smUox, pBudCE4.1-smUox, the co-direction co-expression vector pBudCE4.1-SEAP-mUTs, pBudCE4.1-mUTs-smUox were constructed; the single transfection with pBudCE4.1-SEAP-mUTs or the co-transfection with pSEAP-hucO8 and pcDNA3.1/V5-mUTs, by assaying SEAP expression level in the culture medium, verifies the impact of the double and single vector circuit to uric acid; replacing SAEP gene with smUox,the ability of double and single vector circuits to mediate uric acid is demonstrated by assaying the concentration change of uric acid concentration in the medium within 48 hours. Conclusion: At the cellular level, the construct-ed double vector circuit(phucO8-smUox、pcDNA3.1/V5-mUTs) and the single vector circuit(pBudCE4.1-mUTs-smUox) could both sense and regulate the urid acid. By increasing the mole ration between mUTs and hucO8 in a certain extent, the level and the extent in which the circuit regulates the uric acid could be changed.
出处 《生物技术通讯》 CAS 2014年第4期460-466,共7页 Letters in Biotechnology
关键词 合成生物学 基因回路 尿酸 稳态控制 共表达 synthetic biology genetic circuit uric acid homeostatic control co-expression
作者简介 曲国龙(1988-),男,硕士研究生 通信作者:刘刚,(E-mail)jueliu@sohu.com
  • 相关文献

参考文献13

  • 1楼铁柱.合成生物学发展回顾与军事应用前景展望[J].军事医学,2011,35(2):81-87. 被引量:13
  • 2Kanehisam M. Post-genome informatics[M]. New York: Oxford University Press, 2000:148.
  • 3赵心清,姜如娇,白凤武.启动子和细胞全局转录机制的定向进化在微生物代谢工程中的应用[J].生物工程学报,2009,25(9):1312-1315. 被引量:11
  • 4凌焱,段海清,陈惠鹏.合成生物学[J].军事医学科学院院刊,2006,30(6):572-574. 被引量:13
  • 5Elowitz M B, Leibler S. A synthetic oscillateD' network of Transcriptional regulators[J]. Nature, 2000,403(6767):335-338.
  • 6Gardner T S, Cantor C R, Collins J J. Construction of a ge- netic toggle switch in Escherichia coli[J]. Nature, 2000,403 (6767):339-342.
  • 7Cello J, Paui A V, Wimmer E. Chemical synthesis of poliovi- rus cDNA: generation of infectious virus in the absence of natural template[J]. Science, 2002,297(5883): 1016-1018.
  • 8Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacte- rial cell controlled by a chemically synthesized genome[J]. Sci- ence, 2010,329(5987):52-56.
  • 9Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006,440(7086):940-943.
  • 10Levskaya A, Chevalier A A, Tabor J J, et al. Synthetic biolo- gy: engineering Escherichia coli to see light[J]. Nature, 2005, 438(7067):441-442.

二级参考文献44

  • 1Eijsink VG, Gaseidnes S, Borchert TV, et al. Directed evolution of enzyme stability. Biomol Eng, 2005, 22: 21-30.
  • 2Arnold FH, Wintrode PL, Miyazaki K, et al. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci, 2001, 26(2): 100-106.
  • 3Turner NJ. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol, 2003, 21(11): 474-478.
  • 4Jin YS, Ni H, Laplaza JM, et al. Optimal growth and ethanol production from xylose by recombinant Saccharornyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol, 2003, 69(1): 495-503.
  • 5Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol, 1998, 64(1): 82-87.
  • 6Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005, 102(36): 12678-12683.
  • 7Hartner FS, Ruth C, Langenegger D, et al. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res, 2008, 36(12): e76.
  • 8Sumio M, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 1997, 13(9): 783-793.
  • 9Nevoigt E, Kohnke J, Fischer CR, et al. Engineering of promoter replacement cassettes for fine-turning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol, 2006, 72(8): 5266-5273.
  • 10Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 2007, 73(19): 6072-6077.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部