期刊文献+

基于用户反馈的个性化垃圾邮件过滤方法 被引量:2

Personalized spam filtering method based on users' feedback
在线阅读 下载PDF
导出
摘要 如何在传统垃圾邮件过滤技术基础上实现垃圾邮件个性化过滤是垃圾邮件过滤领域的重要课题。提出一种基于用户反馈的个性化垃圾邮件过滤方法,一方面将用户反馈应用于邮件分类特征的更新,提取用户个性化邮件分类标准;另一方面,将全局邮件分类标准和用户个性化分类标准综合应用于朴素贝叶斯分类过程,实现用户邮件个性化分类。仿真实验结果表明,在用户邮件分类标准存在差异的环境下,基于用户反馈的个性化垃圾邮件过滤方法能够有效提升传统垃圾邮件过滤技术的邮件分类效果。 How to realize the personalized spam filtering based on traditional filtering methods is an important problem in the area of spam filtering. A personalized spam filtering method based on users’ feedback was proposed. On one hand, the feedbacks are used to extract the global and the user’s personalized standard on the e-mail classification, respectively;on the other hand, these two standards are integrated to realize the personalized spam filtering in the proposed method. The simulation results show that the proposed method is able to improve the performance of the traditional spam filtering method in e-mail classification.
出处 《电子设计工程》 2014年第15期53-56,共4页 Electronic Design Engineering
基金 广东省自然科学基金资助项目(S2011040006119)(S2012010008964) 深圳市科技计划项目(JCYJ20120615103057639)
关键词 垃圾邮件 邮件分类标准 用户反馈 个性化邮件分类 贝叶斯模型 spam e-mail classification standard user&#39 s feedback personalized e-mail classification Bayesian model
作者简介 黄国伟(198l-),男,广西桂林人,博士,讲师。研究方向:计算机网络、分布式计算。
  • 相关文献

参考文献9

  • 1中国互联网协会反垃圾邮件(信息)中心. 2010年第四季度中国反垃圾邮件状况调查报告[EB/OL]. http://www.12321.cn/pdf/2010_04_report.pdf, 2010-12-01.
  • 2Friedman N,Geiger D. Bayesian network classifiers [J]. Machine Learning, 1997,29(2):131-163.
  • 3Schneider K. A comparison of event models for naive Bayes anti-spam e-mail filtering[C]//Proceedings of 10th Conference of the European Chapter of the Association for Computational Linguistics. Budapest, Hungary: IEEE Press, 2003:307-314.
  • 4Drucker H,Wu D,Vapnik V. Support vector machines for spam categorization[J]. IEEE Transactions on Neural Networks, 1999,20(5):1048-1054.
  • 5邓春燕,陶多秀,吕跃进.粗糙集与决策树在电子邮件分类与过滤中的应用[J].计算机工程与应用,2009,45(16):138-140. 被引量:4
  • 6Thiago S,Guzella W. A review of machine learning approaches to spam filtering [J]. Expert Systems with Applications,2009 36(7):10206-10222.
  • 7Lai C. An empirical study of three machine learning methods for spam filtering[J]. Knowledge-based System, 2007,20 (3): 249-254.
  • 8王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 9Yih W,Mccann R,Kolcz A. Improving spam filtering by detecting gray mail [C]//Proceedings of Third Conference on Email and AntiSpam (CEAS). California, USA: IEEE Press, 2007.

二级参考文献42

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2张文修 吴伟业 梁吉业 等.粗糙集理论与方法[M].北京:科学出版社,2002..
  • 3Saharni M,Dumais S,Heckerman D,et al.A Bayesian approach to filtering junk e-mail[C]//Proceeding of AAAI Workshop on Ixaming for Text Categorization, 1998 : 55-62.
  • 4Pawlak Z.Rough set theory and its applications to data analysis[J].Cybernetics and. Systems, 1998,29. 661-688.
  • 5Fayyad U M, Irani K B.Muhi-interval discrerization of contirmousvalued attributes for classification learning[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence' Morgan Kanfmann, 1994:1022-1027.
  • 6Rosetta.http://www.idi.ntnu.no/-aleks/thesis/.
  • 7Spam E-mail database.http://www.ics.uci.edu/-mlearn/MLRepository. html.
  • 8廖明涛,张德运,李金库.基于朴素贝叶斯和层次聚类的两阶段垃圾邮件过滤方法[J].微电子学与计算机,2007,24(8):1-3. 被引量:5
  • 9M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 10N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].

共引文献132

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部