摘要
光电编码器通常利用细分两路正交的码盘精码信号达到高分辨力的目的,为使细分技术更加完善,对基于三角波和基于正余弦波的两种细分方法进行了专题研究。分别对理想信号中存在直流误差、幅值误差、基波相位误差、高次谐波误差几种典型误差情况进行了分析,比较两种基于不同波形细分方法的抗干扰能力。实验对精码信号介于正余弦波和三角波之间的编码器进行测试,对于同一台编码器,采用正余弦波细分时精度为36″,采用三角波细分时精度为42″。结果表明:基于正余弦波的细分方法抗干扰能力优于基于三角波的细分方法。对于高精度光电编码器研制和生产时,可利用正余弦波对精码信号进行细分或将实际信号校正至标准正余弦波再细分。
Interpolating two-channel orthogonal fine code signals is usually applied in the photoelectric encoders to get high resolving ability, and to better perfect the interpolation technique, special research was carried out on two interpolation methods which were based on triangular waveforms and sine-cosine waveforms. Analysis was implemented separately on ideal signals where several typical errors existed, including direct current drift, amplitude error, fundamental phase error and higher harmonic error, and anti-interference ability was compared between the two different waveform interpolation methods. The photoelectric encoder with fine code signal between sine-cosine waveform and triangular waveform was tested, and for the same encoder, the accuracy was 36″ when interpolated with sine-cosine waveforms, and 42″ with triangular waveforms. Results demonstrate that, the anti-interference ability of interpolation method based on sine-cosine waveforms is better than that based on triangular waveforms. When developing and manufacturing high-accuracy photoelectric encoders, it is suggested that sine-cosine waveforms should be used in the interpolation of fine code signal, or launch interpolation till the actual signal is calibrated to standard sine-cosine waveforms.
出处
《红外与激光工程》
EI
CSCD
北大核心
2014年第7期2283-2288,共6页
Infrared and Laser Engineering
基金
中国科学院知识创新领域前沿项目
关键词
光电编码器
三角波细分
正余弦波细分
误差
photoelectric encoder
triangular waveform interpolation
sine-cosine waveform interpolation
error
作者简介
冯英翘(1986-),女,博士生,主要从事光电位移精密测量技术方面的研究。Email:fengyingqiao_6562@163.com
导师简介:万秋华(1962-),女,研究员,博士生导师,博士,主要从事光电位移精密测量技术及编码器方面的研究。Email:wanqh@ciomp.ac.cn