期刊文献+

基于径向基函数神经网络和无迹卡尔曼滤波的弹丸落点预报方法研究 被引量:10

Projectile Impact-point Prediction Method Based on Radial Basis Function Neural Network and Unscented Kalman Filter
在线阅读 下载PDF
导出
摘要 为了能够在飞行数据不尽精确的情况下进行快速、准确的落点预报,提出一种基于径向基函数(RBF)神经网络和无迹卡尔曼滤波技术的弹丸落点预报方法。使用RBF神经网络逼近外弹道方程用以预报弹丸落点,并用改进型量子行为粒子群算法优化网络结构和权阈值,在此基础上对基于神经网络的初步预报数据进行滤波处理。最后进行预报仿真,在输入数据有噪声的情况下依然得到了较高的预报精度,从而证明该方法对预报弹丸落点是有效可行的,为弹丸的落点预报的实际应用提供了参考。 A new prediction method based on radial basis function (RBF) neural network and an un- scented Kalman filter technology is proposed for the precise and quick prediction of impact-point without exact flight data. Firstly, RBF neural network approximated external ballistics equation is used to predict the projectile impact-point, and the improved quantum-behaved particle swarm optimization algorithm is used to optimize the training method. On this basis, the tentative prediction data is processed with unscented Kalman filter. At last, the prediction simulation is carried out. The results show that a high prediction precision can be reached under the condition of input data with noise. The method proposed in this paper is efficient and available for impact-point prediction.
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第7期965-971,共7页 Acta Armamentarii
关键词 兵器科学与技术 径向基函数神经网络 粒子群优化 无迹卡尔曼滤波 落点预报 ordnance science and technology radial basis function neural network particle swarm optimization unscented Kalman filter impact-point prediction
作者简介 赵捍东(1960-),男,教授,博士生导师。E-mail:nuc_zhd@163.com
  • 相关文献

参考文献10

  • 1柏杰锋,王晓鸣,李文彬.CCD与MEMS组合测量弹丸落点偏差的方法[J].系统仿真学报,2009,21(2):599-603. 被引量:2
  • 2侯嫒彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
  • 3段晓君.神经网络的函数逼近能力分析[J].模糊系统与数学,1998,12(4):79-84. 被引量:12
  • 4Fathi V, Montazer G A. An improvement in RBF learning algo- rithm based on PSO for real time applications [ J 1. Neurocomput- ing, 2013,111(2) : 169 -176.
  • 5Tsekouras G E. A simple and effective algorithm for implementing particle swarm optimization in RBF network's design using input- output fuzzy clustering [ J ]. Neurocomputing, 2013, 108 ( 2 ) : 36 - 44.
  • 6Su X, Fang W, Shen Q, et al. An image enhancement method u- sing the quantum-behaved particle swarm optimization with an a- daptive strategy [ J ]. Mathematical Problems in Engineering, 2013, 2013(1): 1-14.
  • 7Sun J, Fang W, Palade V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor paint [J]. Applied Mathematics and Computation, 2011, 218 (7): 3763 - 3775.
  • 8Xi M, Sun J, Xu W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position [J], Applied Mathematics and Computation, 2008, 205 (2) : 751 -759.
  • 9Rhudy M, Gu Y, Napolitano M R. An analytical approach for comparing linearization methods in EKF and UKF [ J ]. Interna- tional Journal of Advanced Rabotic Systems, 2013,208 (10) : 1 - 9.
  • 10吴小文,李擎.UKF在MEMS陀螺随机噪声补偿的应用[J].火力与指挥控制,2013,38(6):8-10. 被引量:3

二级参考文献14

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2杨艳明,唐胜景.基于Simulink的子导弹全弹道仿真[J].系统仿真学报,2006,18(6):1442-1444. 被引量:17
  • 3徐劲祥.靶场外弹道试验弹丸速度测定研究[J].战术导弹控制技术,2006(2):89-92. 被引量:5
  • 4孟新宇,王晓鸣,方清.6自由度修正弹道脉冲推力仿真研究[J].系统仿真学报,2006,18(9):2657-2660. 被引量:9
  • 5李德胜.MEMS技术及应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
  • 6Richard Le Boeuf, D Y Fu, Jinho Kim. Using Matlab/Simulink for launch vehicle GN & C validation [C]// AIAA Modeling and Simulation Technologies Conference and Exhibit, 4687(2002). USA: AIAA, 2002.
  • 7张淑琴.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2006.
  • 8潘水泮.武器系统效力分析[M].北京:国防工业出版社,1985.
  • 9Eric A W, Rudolph van der M.The Unscen- ted Kalman Fil- ter for Nonlinear Estimation[ J ].ASSP- CC, 2000:153-158.
  • 10苏中,徐大为,康春鹏.基于GPS/INS导航系统的高速卡尔曼滤波算法研究[J].仪器仪表学报,2008,21(6):15-17.

共引文献40

同被引文献67

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部