期刊文献+

基于独立分量分析的诱发电位信号提取方法 被引量:1

An Independent Component Analysis Based on Signal Separation Method for Evoked Potentials
在线阅读 下载PDF
导出
摘要 诱发电位(EP)信号在检测神经系统状态时有重要意义.但EP信号总是淹没在自发脑电波(EEG)信号中,因此,为利用EP信号诊断神经系统的损伤和病变,需要从二者的混合信号中提取出EP信号.独立分量分析(ICA)是一种新近发展起来的信号分离方法.本文把ICA方法应用于EP信号的提取,并与传统的滤波方法进行了比较.计算机模拟表明,采用ICA方法进行噪声分离的结果明显优于信号滤波方法. The waveform of Evoked Potential (EP) signals is remarkably important for evaluating the status of neural system. Removing or suppressing the noises in EPs is necessary for clinical applications, since they are always contaminated with ongoing electroencephalogram (EEC) and other noises. Independent Component Analysis (ICA) is a new way for signal separation. It is used to recover EP signals from EEG noises in this study. A comparison with a traditional filtering technology is also conducted. Computer simulation results show that the ICA based method is much better than the filtering technology in signal and noise separation.
出处 《大连铁道学院学报》 2002年第2期62-65,共4页 Journal of Dalian Railway Institute
基金 国家自然科学基金资助项目(30170259) 辽宁省科学技术基金资助项目(2001101057)
关键词 独立分量分析 ICA 诱发电位 EP 信号分离 计算机模拟 信号检测 中枢神经系统 医学诊断 Independent Component Analysis (ICA) Evoked Potential(EP) signal separation
  • 相关文献

参考文献1

二级参考文献10

  • 1Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 2Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998
  • 3Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998
  • 4Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999
  • 5Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998
  • 6Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994
  • 7Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999
  • 8Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996
  • 9Comon P.Independent component analysis:A new concept ?[].Signal Processing.1994
  • 10Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[].Neural Computation.1997

共引文献57

同被引文献11

  • 1高育林,罗永光,李伟鹏.诱发脑电信号的滤波-基于小波分析与维纳滤波[J].中国医学物理学杂志,1996,13(4):250-252. 被引量:4
  • 2Hyvrinen A. The fixed-point algorithm and maximum likelihood estimation for independent component analysis[J]. Neural Processing Letters, 1999,10(1):1~5.
  • 3Vinther M. Independent component analysis of evoked potential in EEG[R]. Technical Reports, 2002.1~23.
  • 4Delorme A, Makeig S, Sejnowski T. Automatic artifact rejection for EEG data using high-order statistics and independent component analysis[A]. Proc of the 3rd International Conference on Independent Component Analysis and Blind Signal Separation[C]. San Diego, California, USA, 2001.457~462.
  • 5Documentation 2nd Wadsworth BCI Dataset(P300 Evoked Potentials)[EB/OL]: http://ida.first.fraunhofer.de/~blanker/competition/.
  • 6Vinther M. Improving evoked potentials extraction[R]. Technical Reports, 2002.1~18.
  • 7Cichocki A, Gharieb R R, Hoya T. Efficient extraction of evoked potentials by combination of Wiener filtering and subspace methods[A]. Proc of the IEEE Conference on Acoustics, Speech, and Signal Processing(ICASSP′01)[C].2001. 3117~3120.
  • 8Jung T P, Humphries C, Lee T W, et al. Removing electroencephalographic artifacts: comparison between ICA and PCA[J]. Neural Networks for Signal Processing, 1998,Ⅷ:63~72.
  • 9洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52
  • 10周卫东,贾磊,李英远.一种独立分量分析的迭代算法和实验结果[J].生物物理学报,2002,18(1):57-60. 被引量:13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部