摘要
提出了一种集结数据信息的组合加权几何平均 (CWGA)算子 ,证明了加权几何平均(WGA)算子以及有序加权几何平均 (OWGA)算子均为CWGA算子的特例 .CWGA算子的根本特点是 :不仅考虑每个数据的自身重要性程度 ,而且还体现了每个数据所在位置的重要性程度 .最后 ,提出了一种基于WGA及CWGA算子的多属性群决策方法 。
A combined weighted geometric averaging (CWGA) operator is presented and both the well known weighted geometric averaging (WGA) operator and the ordered weighted geometric averaging (OWGA) operator are proved to be the special cases of the CWGA operator. The fundamental aspect of the CWGA operator is that it takes the importance degrees of both individual argument and its relative position into account. Finally, a method based on the WGA and CWGA operators for multi-attribute group decision-making problems is proposed, and an illustrative example is given to verify the developed method and to demonstrate its reasonability and effectiveness.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第3期506-509,共4页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目 ( 79970 0 93)
东南大学南瑞继保公司学位论文基金资助项目