期刊文献+

粗集中规则提取的一种增量式算法 被引量:4

An incremental algorithm of extracting rules in the rough set
在线阅读 下载PDF
导出
摘要 本文对数据成时间序列的动态决策表 ,用增量式算法提取决策表的规则模型。增量式算法的关键点是在分类正确率和相容度下对属性集进行优级排序 ,算法的特点是随着数据的增加逐次推导规则。随着计算轮次的增加 ,比较运算的次数按多项式增加。由于大型静态数据库可转化为动态数据库 ,所以 。 In this paper, we extract rules of the decision table by an incremental algorithm for the dynamic decision table of the time series data. The key of the algorithm is that the attribute set is sequenced according to the classification correct ratio and the consistent degree. The distinguishing features of the algorithm is that the rules are inferred step by step with increasing data and the amounts of comparision operation increas in polynomial with increasing of the steps. Because a static large scale data base can be coverted to a dynamic data base, the incremental algorithm is a efficient algorithm of extracting rules in the large scale decision table.
出处 《河北建筑科技学院学报》 2001年第3期66-70,共5页 Journal of Hebei Institute of Architectural Science & Technology
基金 国家自然科学基金 ( 6 0 0 75 0 13) 河北省自然科学基金 ( 6 0 1312 )
关键词 粗集 动态决策表 规则提取 属性集排序 相容度 增量式算法 rough set dynamic decision table rule extracting attribute set sequencing consistent degree incremental algorithm
  • 相关文献

参考文献3

  • 1Z. Pawlak. RoughSet-theoretical-Aspects of Reasoning about Data [ M]. Kluwer Academic Publishers, Boston:1992.
  • 2IVO Duntsch, Gunther Gediga. Uncertainty measures of rough set prediction [ J].Artificial Intelligence, 1998, (106): 109-137.
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264

二级参考文献1

  • 1Zdzis?aw Pawlak. Rough sets[J] 1982,International Journal of Computer & Information Sciences(5):341~356

共引文献263

同被引文献24

  • 1Pawlak Z. Rough Sets - Theoretical Aspects of Reasoning About Data [M]. Dorderecht, Boston, London: Kluwer Academic publishers, 1991.
  • 2Bazan J, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decision tables[ A] .Proceedings of the Eighth international symposium on methodo- logies for intelligent systems( ISMIS' 94 ) [ C ]. [ s. l. ]: Springer - verlag,1995. 346 - 355.
  • 3Nguyen H S, Nguyen S H. Some efficient algorithms for rough set methods[A]. Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge_ Based System[C]. Granada, Spain:[s. n. ], 1996. 1451 - 1456.
  • 4Bazan J G, Skowron A, Synak P. Discovery of decision rules from experimenral data[A]. Proceedings of the Third international workshop on Rough Sets and Soft Computing( RSSC'94)[C]. San Jose, California: San Jose State Univ., 1994.526 - 533.
  • 5PAWLAK Z, BUSSE J G.Rough sets[J].Communications on the ACM, 1995, 38(11):89-95.
  • 6ZIARKO W.Introduction to the special issue on rough sets and knowledge discovery[J].Computational Intelligence,1995,11(2): 223-226
  • 7Nir Friedman,Dan Geiger,Moises Goldszmidt. Bayesian Network Classifiers[J] 1997,Machine Learning(2-3):131~163
  • 8卞学海.非一致性数据的必然规则学习[J].华东船舶工业学院学报,1998,12(1):25-30. 被引量:7
  • 9邸凯昌,李德仁,李德毅.Rough集理论及其在GIS属性分析和知识发现中的应用[J].武汉测绘科技大学学报,1999,24(1):6-10. 被引量:17
  • 10李莉.基于可变精度粗集模型的增量式归纳学习[J].计算机科学,1999,26(1):55-58. 被引量:7

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部