摘要
采用金相及透射电子显微镜对高氮奥氏体Fe-20Mn-19Cr-0. 6N钢在应变速率范围为3×10^(-6)~1 s^(-1)条件下的拉伸变形行为进行了研究。研究结果表明:N元素的固溶强化作用和促使位错平面滑移阻碍位错运动机制是高氮奥氏体钢的重要应变硬化机制,同时,随着应变速率的提升,这种强化机制不断提升,而应变诱导孪生机制不断削弱。随着应变速率的提升,高氮奥氏体钢的抗拉强度和屈服强度均呈逐步上升的趋势,断后伸长率则逐步下降。屈服强度提升超过60%,而抗拉强度提升仅10%。随着应变速率的提升,基体变形程度逐步下降,材料的位错密度和滑移带密度逐步下降。
The tensile deformation behavior at strain rate range of 3 × 10^-6-1 s^-1 in Fe-20Mn-19Cr-0. 6N austenitic steel was studied by using optical microscopy and transmission electron microscopy. The results show that the effects of solid solution strengthening and promoting dislocation planar slip to impede dislocation movement by N elements are the important strain hardening mechanism of high nitrogen austenitic steels. Meanwhile,this strengthening mechanism is continuously improved,and the strain induced twin mechanism is gradually weakened with the increase of strain rate. The strength gradually increases and total elongation gradually decreases with the increase of strain rate. The yield strength increases over 60%,while tensile strength increases only by 10%. The deformation degree of the matrix gradually decreases as well as the dislocation density and slip band density with the increase of strain rate.
作者
彭梦都
时捷
崔冰
孙挺
李晓源
王毛球
Peng Mengdu;Shi Jie;Cui Bing;Sun Ting;Li Xiaoyuan;Wang Maoqiu(Institute for Special Steels,Central Iron and Steel Research Institute,Beijing 100081,China;Maanshan Iron &Steel Co.,Ltd.,Maanshan Anhui 243003,China;School of Materials Science and Engineering,Anhui University of Technology,Maanshan Anhui 243000,China)
出处
《金属热处理》
CAS
CSCD
北大核心
2019年第1期57-60,共4页
Heat Treatment of Metals
关键词
高氮奥氏体钢
应变速率
应变硬化速率
应变硬化机制
TWIP效应
high nitrogen austenitic steel
strain rate
strain hardening rate
strain hardening mechanism
TWIP effect
作者简介
彭梦都(1987-),男,工程师,博士,主要从事先进高强钢技术研究,联系电话:15555508246,E-mail:kmustpmd@163.com.