期刊文献+

基于神经网络的Volterra频域核辨识方法 被引量:5

Identifying of Volterra Frequency-Domain Kernels Based on Neural Network
在线阅读 下载PDF
导出
摘要 针对目前Volterra频域核辨识方法复杂、精度不高等问题,提出一种基于神经网络的Volterra频域核辨识方法。首先选择多组频率基准确测量各阶Volterra频域核的幅值,利用BP神经网络可以任意逼近非线性函数的特点,针对不同阶Volterra频域核设计不同的神经网络模型,进行分阶辨识,最后通过一个非线性电路进行仿真验证。仿真结果表明,该方法可直接辨识频率范围内任意频率对应的Volterra频域核,过程简单、准确度高,易于工程实现。 In order to solve the problem of high complexity and low accuracy of the current method for Volterra frequency-domain kernel identification, a method for Volterra frequency-domain kernel identification based on neural network is proposed. Firstly, the amplitude of each Volterra frequency-domain kernel is accurately measured after choosing multiple frequency components. Then, we use the characteristics of BP neural network that it can approximate nonlinear functions to design different models for different-order Volterra frequency-domain kernels, so as to identify each kernel. Finally, a nonlinear circuit is adopted for simulation. The results show that this method can directly identify all the Volterra frequency-domain kernels in the frequency range, and the process is simple with high accuracy, which is suitable for engineering realization.
作者 吴世浩 孟亚峰 王超 WU Shi-hao;MENG Ya-feng;WANG Chao(Shijiazhuang Campus,Army Engineering University,Shijiazhuang 050003,China;No.63850 Unit of PLA, Baieheng 137000,China;No.65735 Unit of PLA,Dandong 118000,China)
出处 《电光与控制》 CSCD 北大核心 2019年第2期38-43,共6页 Electronics Optics & Control
基金 国家自然科学基金(61372039)
关键词 VOLTERRA级数 非线性 频域核辨识 神经网络 Volterra series nonlinear frequency-domain kernel identification neural network
作者简介 吴世浩(1993-),男,河南焦作人,硕士,研究方向为电子装备测试与故障诊断。
  • 相关文献

参考文献6

二级参考文献75

共引文献56

同被引文献35

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部