摘要
In this work, the microstructure and the corresponding tensile properties of the rolled Ti-7Mo-3Nb-3Cr-3Al(Ti-7333) alloy before and after the thermal treatments were investigated. The results show that a strong α-fiber texture is developed in the rolled Ti-7333 alloy. The deformed matrix and the texture significantly induce the variant selection of β phase. The high strength of the rolled Ti-7333 alloy is attributed to the <110> texture parallel to the tensile direction and the dispersed α phase within the matrix. After the solution treatment followed by the aging treatment, the texture decreases and the microstructure consists of the equiaxed β grains, the spheroidal α_p phase and various needle-like α variants. Eventually, the alloy could achieve an optimal combination with the strength of about 1450 MPa,the ductility of about 10.5% and a considerable shear strength of about 775 MPa. This balance can be ascribed to the performance of the spheroidal α_p phase and various needle-like α_s variants. The results indicate that the Ti-7333 alloy could be a promising candidate material for the high-strength fastener.
In this work, the microstructure and the corresponding tensile properties of the rolled Ti-7Mo-3Nb-3Cr-3Al(Ti-7333) alloy before and after the thermal treatments were investigated. The results show that a strong α-fiber texture is developed in the rolled Ti-7333 alloy. The deformed matrix and the texture significantly induce the variant selection of β phase. The high strength of the rolled Ti-7333 alloy is attributed to the <110> texture parallel to the tensile direction and the dispersed α phase within the matrix. After the solution treatment followed by the aging treatment, the texture decreases and the microstructure consists of the equiaxed β grains, the spheroidal α_p phase and various needle-like α variants. Eventually, the alloy could achieve an optimal combination with the strength of about 1450 MPa,the ductility of about 10.5% and a considerable shear strength of about 775 MPa. This balance can be ascribed to the performance of the spheroidal α_p phase and various needle-like α_s variants. The results indicate that the Ti-7333 alloy could be a promising candidate material for the high-strength fastener.
基金
financially supported by the National Natural Science Foundation of China(Grant No.51711530151)
the Major State Research Development Program of China(Nos.2016YFB0701303 and 2016YFB0701305)
作者简介
Corresponding authors at:Jinshan Li,State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an 710072,China.E-mail addresses:ljsh@nwpu.edu.cn;Corresponding authors at:Hongchao Kou,State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an 710072,China.E-mail addresses:hchkou@nwpu.edu.cn