期刊文献+

基于IGWO算法优化的SVM模拟电路故障诊断 被引量:10

Analogue Circuit Fault Diagnosis Based on SVM Optimized by IGWO
在线阅读 下载PDF
导出
摘要 为提高基于支持向量机(SVM)模拟电路故障诊断的准确率和优化效率,在灰狼优化(GWO)算法的基础上,通过引入非线性收敛因子、动态权重和边界变异策略,提出了一种改进灰狼优化(IGWO)算法优化SVM参数(IGWO-SVM)的改进型分类器.首先,在Sallen-Key带通滤波器和四运放双二次高通滤波器电路中采集故障样本,并对故障样本进行小波包特征提取;然后,将特征提取后的样本划分为训练样本和测试样本,利用IGWO算法来优化SVM中的惩罚参数C和核参数γ,得到最优的SVM分类器模型;最后,与其他算法优化的SVM分类器进行对比,结果表明IGWO-SVM分类器可以防止种群陷入局部最优,同时收敛速度有了较大提升. In order to improve the accuracy and optimization efficiency of analog circuit fault diagnosis based on support vector machine (SVM),on the basis of gray wolf optimization (GWO)algorithm,this paper proposes a modified classifier that uses the improved gray wolf optimization (IGWO)algorithm to optimize the parameter of SVM (IGSA-SVM)by introducing the nonlinear convergence factor,dynamic weight and boundary variation strategy.Firstly,the fault samples are collected in the Sallen-Key bandpass filter circuit and four opamp biquad highpass filter circuit,and wavelet packet feature extraction is applied to fault samples.Then,feature-extracted samples are divided into training samples and test samples.The IGWO algorithm is used to optimize the penalty parameter C and the kernel parameters γ in SVM to obtain the optimal SVM classifier model.Finally,compared with SVM classifiers optimized by other algorithms,the results show that the IGWO-SVM classifier can prevent the population from falling into a local optimum,and the convergence speed has been greatly improved.
作者 熊魁 岳长喜 刘冬梅 梅恒荣 XIONG Kui;YUE Chang-xi;LIU Dong-mei;MEI Heng-rong(China Electric Power Research Institute,Wuhan 430074,China;School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
出处 《微电子学与计算机》 北大核心 2019年第1期16-21,共6页 Microelectronics & Computer
基金 国家电网公司科技项目(JL71-18-003)
关键词 改进灰狼优化算法 支持向量机 模拟电路 故障诊断 improved gray wolf optimization algorithm support vector machine analog circuit fault diagnosis
作者简介 熊魁,男,(1988一),硕士,工程师.研究方向为电气测量技术;岳长喜,男,(1982一),硕士,高级工程师.研究方向为高电压大电流以及电能计量技术;通讯作者:刘冬梅,女,(1982一),博士,副教授,硕士生导师.研究方向为电路设计、电路故障诊断和信号处理.E-mail:dmliul00@hfut.edu.cn;梅恒荣,男,(1993一),硕士研究生.研究方向为机器学习和故障诊断.
  • 相关文献

参考文献4

二级参考文献43

  • 1李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 2Allipi C, Catelani M, Fort A, et al. SBT soft fault diagnosis in a- nalog electronic circuits:A sensitivity-based approach by random- ized algorithms [ J ]. IEEE Trans On Instrument and Measure- ment,2002,51 (5) :1116 -1125.
  • 3Catelani M, Fort A. Soft fault detection and isolation in analog circuits : Some results and a comparison between a fuzzy approachand radial basis function networks[ J]. IEEE Trans on Instrumen- tation and Measurement,2002,51 (2) :196-202.
  • 4Aminian F, Aminian M ,Collins H W. Analog fault diagnosis of actual circuits using neural networks [ J ]. IEEE Trans on Instru- .mentation and Measurement ,2002,51 (3) :544 -549.
  • 5He Yigang, Tan Yanghong, Sun Yichuang. Fault diagnosis of analog circuits based on wavelet packets [ C ]//II~EE TENCON, 2004:267 -270.
  • 6Anna W, Bumin L. Fault diagnosis of circuits with tolerance based on support vector machines [ C ]///Proc of ICCCS, 2006 : 2235 - 2238.
  • 7Burges, C J C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2(2) :121 -167.
  • 8Hsu Chih Wei, Lin Chih Jen. A comparison of methods for multi- class support vector machines [ J ]. IEEE Trans on Neural Net- works ,2002,13 (2) :415 -425.
  • 9Anguita D, Rudella S, Sterpi D. A new method for multi-class support vector machines [ C ]//Pmc IEEE IJCNN, 2004 : 407 - 412.
  • 10Platt J C, Cristianini, Taylor J S. Large margin DAGs for multi- class classification [ C ]//Int' 1 Conf on Advances in Neural Infor- mation Processing Systems, Denver, US, 2000.

共引文献173

同被引文献91

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部